|
|
A294152
|
|
Chromatic invariant of the n-antiprism graph.
|
|
2
|
|
|
0, 2, 11, 38, 112, 309, 828, 2190, 5759, 15106, 39580, 103657, 271416, 710618, 1860467, 4870814, 12752008, 33385245, 87403764, 228826086, 599074535, 1568397562, 4106118196, 10749957073, 28143753072, 73681302194, 192900153563, 505019158550, 1322157322144
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Extended to a(1)-a(2) using the formula/recurrence.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = phi^(2*n) + phi^(-2*n) - 2*n - 1.
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4).
G.f.: x^2*(2 + x - x^2)/((-1 + x)^2*(1 - 3*x + x^2)).
a(n) = -1 + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n - 2*n. - Colin Barker, Nov 16 2017
|
|
MATHEMATICA
|
Table[LucasL[2 n] - 2 n - 1, {n, 3, 20}]
LinearRecurrence[{5, -8, 5, -1}, {0, 2, 11, 38}, 20]
CoefficientList[Series[(x (2 + x - x^2))/((-1 + x)^2 (1 - 3 x + x^2)), {x, 0, 20}], x]
|
|
PROG
|
(PARI) concat(0, Vec(x^2*(2 + x - x^2)/((-1 + x)^2*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Nov 16 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|