login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294147
Initial member of 9 consecutive primes {a, b, c, d, e, f, g, h, i} such that (a + b + c)/3, (d + e + f)/3 and (g + h + i)/3 are all prime.
0
63487, 462067, 830777, 847507, 1012159, 1049773, 1250611, 1268747, 1372537, 1372559, 1589657, 1988237, 2567557, 2696569, 2874673, 2967317, 3676111, 3718657, 4196987, 4255067, 4550867, 4669333, 5217911, 5225147, 5716031, 6019553, 6103171, 6725657, 6725731, 7143557
OFFSET
1,1
EXAMPLE
63487 is a term because it is the initial term of 9 consecutive primes {63487, 63493, 63499, 63521, 63527, 63533, 63541, 63559, 63577} = {a, b, c, d, e, f, g, h, i}: the arithmetic mean of three sets, i.e., (a + b + c)/ 3, (d + e + f)/3 and (g + h + i)/3 is prime.
MATHEMATICA
Select[Partition[Prime@ Range[5*10^5], 9, 1], Function[{a, b, c, d, e, f, g, h, i}, AllTrue[{(a + b + c)/3, (d + e + f)/3, (g + h + i)/3}, PrimeQ]] @@ # &][[All, 1]] (* Michael De Vlieger, Oct 23 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Oct 23 2017
STATUS
approved