login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060775
The greatest divisor d|n such that d < n/d, with a(1) = 1.
62
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 4, 1, 2, 3, 4, 1, 5, 1, 4, 3, 2, 5, 4, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 6, 1, 5, 3, 4, 1, 6, 5, 7, 3, 2, 1, 6, 1, 2, 7, 4, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 5, 4, 7, 6, 1, 8, 3, 2, 1, 7, 5, 2, 3
OFFSET
1,6
COMMENTS
Also: Largest divisor of n which is less than sqrt(n).
If n is not a square, then a(n) = A033676(n), else a(n) is strictly smaller than A033676(n) = sqrt(n) (except for a(1) = 1). - M. F. Hasler, Sep 20 2011
Record values occur for n = k * (k+1), for which a(n) = k. - Franklin T. Adams-Watters, May 01 2015
If we define a divisor d|n to be strictly inferior if d < n/d, then strictly inferior divisors are counted by A056924 and listed by A341674. This sequence gives the greatest strictly inferior divisor, which may differ from the lower central divisor A033676. Central divisors are listed by A207375. - Gus Wiseman, Feb 28 2021
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (terms n = 2..1000 from Harry J. Smith)
FORMULA
a(n) = max { d: d|n and d < sqrt(n) or d = 1 }, where "|" means "divides". [Corrected by M. F. Hasler, Apr 03 2019]
EXAMPLE
n = 252, D = {1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252}, 18 divisors, the 9th is 14, so a(252) = 14.
From Gus Wiseman, Feb 28 2021: (Start)
The strictly inferior divisors of selected n:
n = 1 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240
-----------------------------------------------------------------
{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 4 3 3 4 3 3 5 3 3 7 3 3
5 6 7 4 5 10 4 4 13 5 4
6 6 6 6 6 5
8 9 11 12 7 6
10 8
14 10
12
15
(End)
MAPLE
with(numtheory):
a:= n-> max(select(d-> is(d=1 or d<sqrt(n)), divisors(n))):
seq(a(n), n=1..100); # Alois P. Heinz, Jan 29 2018
MATHEMATICA
Table[Part[Divisors[w], Floor[DivisorSigma[0, w]/2]], {w, 1, 256}]
Table[If[n==1, 1, Max[Select[Divisors[n], #<n/#&]]], {n, 100}] (* Gus Wiseman, Feb 28 2021 *)
PROG
(PARI) A060775(n)=if(n>1, divisors(n)[numdiv(n)\2], 1) \\ M. F. Hasler, Sep 21 2011
CROSSREFS
The weakly inferior version is A033676.
Positions of first appearances are A180291.
These are the row-maxima of A341674.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A070039 adds up strictly inferior divisors.
A207375 lists central divisors.
A333805 counts strictly inferior odd divisors.
A333806 counts strictly inferior prime divisors.
A341596 counts strictly inferior squarefree divisors.
A341677 counts strictly inferior prime-power divisors.
- Strictly Superior: A048098, A064052, A140271, A238535, A341642, A341673.
Sequence in context: A366510 A366522 A345934 * A355368 A175494 A055399
KEYWORD
nonn,look,changed
AUTHOR
Labos Elemer, Apr 26 2001
EXTENSIONS
a(1) = 1 added (to preserve the relation a(n) | n) by Franklin T. Adams-Watters, Jan 27 2018
Edited by M. F. Hasler, Apr 03 2019
Name changed by Gus Wiseman, Feb 28 2021 (was: Lower central (median) divisor of n, with a(1) = 1.)
STATUS
approved