login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333806
Number of distinct prime divisors of n that are < sqrt(n).
38
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 3
OFFSET
1,12
COMMENTS
a(n) = 0 if and only if n = p^k where p is prime and k is 0, 1, or 2. - Charles R Greathouse IV, Apr 07 2020
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).
MAPLE
N:= 100: # for a(1)..a(N)
V:= Vector(N):
p:= 1:
do
p:= nextprime(p);
if p^2 >= N then break fi;
L:= [seq(p*k, k=p+1..N/p)];
V[L]:= V[L]+~1
od:
convert(V, list); # Robert Israel, Apr 07 2020
MATHEMATICA
Table[DivisorSum[n, 1 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 90}]
nmax = 90; CoefficientList[Series[Sum[x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(PARI) a(n)=my(f=factor(n)[, 1]); sum(i=1, #f, f[i]^2<n) \\ Charles R Greathouse IV, Apr 07 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 05 2020
STATUS
approved