OFFSET
1,12
COMMENTS
a(n) = 0 if and only if n = p^k where p is prime and k is 0, 1, or 2. - Charles R Greathouse IV, Apr 07 2020
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=1} x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).
a(k*n) >= a(n) for k > 0. a(n^e) = A001221(n) for e > 2. - Richard Peterson, Dec 19 2024
MAPLE
N:= 100: # for a(1)..a(N)
V:= Vector(N):
p:= 1:
do
p:= nextprime(p);
if p^2 >= N then break fi;
L:= [seq(p*k, k=p+1..N/p)];
V[L]:= V[L]+~1
od:
convert(V, list); # Robert Israel, Apr 07 2020
MATHEMATICA
Table[DivisorSum[n, 1 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 90}]
nmax = 90; CoefficientList[Series[Sum[x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(PARI) a(n)=my(f=factor(n)[, 1]); sum(i=1, #f, f[i]^2<n) \\ Charles R Greathouse IV, Apr 07 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 05 2020
STATUS
approved