OFFSET
1,14
COMMENTS
FORMULA
G.f.=G(t,x)=sum(t^(i-1)*x^(i(i+1)/2)/[(1-x^i)product(1-tx^j, j=1..i-1)], i=1..infinity).
EXAMPLE
T(12,5)=3 because we have [7,3,2],[6,5,1] and [6,3,2,1].
Triangle starts:
1;
1;
1,1;
1,0,1;
1,1,0,1;
1,0,2,0,1;
MAPLE
g:=sum(t^(i-1)*x^(i*(i+1)/2)/(1-x^i)/product(1-t*x^j, j=1..i-1), i=1..20): gser:=simplify(series(g, x=0, 20)): for n from 1 to 16 do P[n]:=coeff(gser, x^n) od: 1; for n from 2 to 16 do seq(coeff(P[n], t, j), j=0..n-2) od; # yields sequence in triangular form
MATHEMATICA
z = 20; d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]; p[n_, k_] := p[n, k] = d[n][[k]]; t = Table[Max[p[n, k]] - Min[p[n, k]], {n, 1, z}, {k, 1, PartitionsQ[n]}]; u = Table[Count[t[[n]], k], {n, 1, z}, {k, 0, n - 2}];
TableForm[u] (* A117454 as an array *)
Flatten[u] (* A117454 as a sequence *)
(* Clark Kimberling, Mar 14 2014 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Mar 18 2006
STATUS
approved