login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117451
Expansion of (1-x+x^2+x^5)/((1-x)*(1-x^5)).
3
1, 0, 1, 1, 1, 3, 2, 3, 3, 3, 5, 4, 5, 5, 5, 7, 6, 7, 7, 7, 9, 8, 9, 9, 9, 11, 10, 11, 11, 11, 13, 12, 13, 13, 13, 15, 14, 15, 15, 15, 17, 16, 17, 17, 17, 19, 18, 19, 19, 19, 21, 20, 21, 21, 21, 23, 22, 23, 23, 23, 25, 24, 25, 25, 25, 27, 26, 27, 27, 27, 29, 28, 29, 29, 29, 31, 30, 31
OFFSET
0,6
FORMULA
a(n) = a(n-1) + a(n-5) - a(n-6).
a(n) = -1 + ((5 + sqrt(5))/10)*cos(4*Pi*n/5) - sqrt(((5 - sqrt(5))/250)*sin(4*Pi*n/5) + ((5-sqrt(5))/10)*cos(2*Pi*n/5) + sqrt((5+sqrt(5))/250)*sin(2*Pi*n/5) + (2*n + 5)/5.
a(n) = A117450(n) - A117450(n-1). - G. C. Greubel, Jun 03 2021
MATHEMATICA
CoefficientList[Series[(1-x+x^2+x^5)/((1-x)(1-x^5)), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {1, 0, 1, 1, 1, 3}, 80] (* Harvey P. Dale, Jan 01 2016 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1-x+x^2+x^5)/((1-x)*(1-x^5)) )); // G. C. Greubel, Jun 03 2021
(Sage)
def A117451_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x+x^2+x^5)/((1-x)*(1-x^5)) ).list()
A117451_list(80) # G. C. Greubel, Jun 03 2021
CROSSREFS
Partial sums are A117450. Partial sums of A117452.
Sequence in context: A086920 A182021 A370231 * A130970 A144733 A091460
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 16 2006
STATUS
approved