login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117449
Inverse of a number triangle related to L(n/3), where L(j/p) is the Legendre symbol of j and p.
2
1, 0, 1, 0, -1, 1, 0, -1, 1, 1, 0, 1, -1, 0, 1, 0, -2, 2, 0, -1, 1, 0, -1, 1, 0, -1, 1, 1, 0, 1, -1, 0, 1, -1, 0, 1, 0, -2, 2, 0, -2, 2, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 1
OFFSET
0,17
FORMULA
Sum_{k=0..n} T(n, k) = A011655(n+1).
EXAMPLE
Triangle begins as:
1;
0, 1;
0, -1, 1;
0, -1, 1, 1;
0, 1, -1, 0, 1;
0, -2, 2, 0, -1, 1;
0, -1, 1, 0, -1, 1, 1;
0, 1, -1, 0, 1, -1, 0, 1;
0, -2, 2, 0, -2, 2, 0, -1, 1;
0, -1, 1, 0, -1, 1, 0, -1, 1, 1;
0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1;
MATHEMATICA
A117446[n_, k_]:= If[k<=n, Binomial[JacobiSymbol[k-1, 3], n-k], 0];
m = With[{nmax = 20}, Table[A117446[i, j], {i, nmax}, {j, nmax}]];
Table[Inverse[m][[n, k]], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jun 03 2021 *)
CROSSREFS
Cf. A011655 (row sums), A117446 (inverse).
Sequence in context: A215573 A163537 A219946 * A004594 A124210 A287447
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Mar 16 2006
STATUS
approved