login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063962 Number of distinct prime divisors of n that are <= sqrt(n). 37
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

For all primes p: a(p) = 0 (not marked) and for k > 1 a(p^k) = 1.

a(1) = 0 and for n > 0 a(n) is the number of marks when applying the sieve of Eratosthenes where a stage for prime p starts at p^2.

If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence counts inferior prime divisors. - Gus Wiseman, Feb 25 2021

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000

FORMULA

G.f.: Sum_{k>=1} x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020

a(A002110(n)) = n for n > 2. - Gus Wiseman, Feb 25 2021

EXAMPLE

a(33) = a(3*11) = 1, as 3^2 = 9 < 33 and 11^2 = 121 > 33.

From Gus Wiseman, Feb 25 2021: (Start)

The a(n) inferior prime divisors (columns) for selected n:

n =  3  8  24  3660  390  3570 87780

   ---------------------------------

    {}  2   2     2    2     2     2

            3     3    3     3     3

                  5    5     5     5

                      13     7     7

                            17    11

                                  19

(End)

MAPLE

with(numtheory): a:=proc(n) local c, F, f, i: c:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then c:=c+1 else c:=c: fi od: c; end: seq(a(n), n=1..105); # Emeric Deutsch

MATHEMATICA

Join[{0}, Table[Count[Transpose[FactorInteger[n]][[1]], _?(#<=Sqrt[n]&)], {n, 2, 110}]] (* Harvey P. Dale, Mar 26 2015 *)

PROG

(PARI) { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[1, i]^2<=n, a++, break)); write("b063962.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009

(Haskell)

a063962 n = length [p | p <- a027748_row n, p ^ 2 <= n]

-- Reinhard Zumkeller, Apr 05 2012

CROSSREFS

Cf. A055399, A001221.

Cf. A027748, A063962.

Zeros are at indices A008578.

The divisors are listed by A161906 and add up to A097974.

Dominates A333806 (the strictly inferior version).

The superior version is A341591.

The strictly superior version is A341642.

A001221 counts prime divisors, with sum A001414.

A033677 selects the smallest superior divisor.

A038548 counts inferior divisors.

A063538/A063539 have/lack a superior prime divisor.

A161908 lists superior divisors.

A207375 lists central divisors.

A217581 selects the greatest inferior prime divisor.

A341676 lists the unique superior prime divisors.

- Inferior: A033676, A066839, A069288, A072499, A333749, A333750.

- Superior: A051283, A059172, A070038, A072500, A116883, A341592, A341675.

- Strictly Inferior: A056924, A060775, A070039, A333805, A341596, A341674.

- Strictly Superior: A056924, A140271, A238535, A341594, A341595, A341673.

Cf. A000005, A001248, A005117, A006530, A020639, A048098, A064052, A341643.

Sequence in context: A171182 A333806 A340832 * A084114 A294881 A110475

Adjacent sequences:  A063959 A063960 A063961 * A063963 A063964 A063965

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Sep 04 2001

EXTENSIONS

Revised definition from Emeric Deutsch, Jan 31 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 07:22 EDT 2022. Contains 353852 sequences. (Running on oeis4.)