login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097974
Sum of distinct prime divisors of n which are <= sqrt(n).
12
0, 0, 0, 2, 0, 2, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 5, 2, 3, 2, 0, 10, 0, 2, 3, 2, 5, 5, 0, 2, 3, 7, 0, 5, 0, 2, 8, 2, 0, 5, 7, 7, 3, 2, 0, 5, 5, 9, 3, 2, 0, 10, 0, 2, 10, 2, 5, 5, 0, 2, 3, 14, 0, 5, 0, 2, 8, 2, 7, 5, 0, 7, 3, 2, 0, 12, 5, 2, 3, 2, 0, 10, 7, 2, 3, 2, 5, 5, 0, 9, 3, 7, 0, 5, 0
OFFSET
1,4
LINKS
FORMULA
G.f.: Sum_{k>=1} prime(k) * x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020
EXAMPLE
2 and 3 are the distinct prime divisors of 12 and both 2 and 3 are <= square root of 12. So a(12) = 2 + 3 = 5.
MAPLE
with(numtheory): a:=proc(n) local s, F, f, i: s:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then s:=s+F[i] else s:=s: fi od: s; end: seq(a(n), n=1..110); # Emeric Deutsch, Jan 30 2006
MATHEMATICA
Do[Print[Plus @@ Select[Select[Divisors[n], PrimeQ], #<=Sqrt[n] &]], {n, 1, 100}] (* Ryan Propper, Jul 23 2005 *)
Table[DivisorSum[n, # &, And[PrimeQ@ #, # <= Sqrt[n]] &], {n, 103}] (* Michael De Vlieger, Sep 04 2017 *)
PROG
(Haskell)
a097974 n = sum [p | p <- a027748_row n, p ^ 2 <= n]
-- Reinhard Zumkeller, Apr 05 2012
(PARI) a(n) = sumdiv(n, d, d*isprime(d)*(d <= sqrt(n))); \\ Michel Marcus, Aug 17 2017
CROSSREFS
Sequence in context: A271419 A278922 A163169 * A333753 A139036 A292129
KEYWORD
nonn
AUTHOR
Leroy Quet, Sep 07 2004
EXTENSIONS
More terms from Ryan Propper, Jul 23 2005
Further terms from Emeric Deutsch, Jan 30 2006
STATUS
approved