The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097974 Sum of distinct prime divisors of n which are <= sqrt(n). 8
 0, 0, 0, 2, 0, 2, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 5, 2, 3, 2, 0, 10, 0, 2, 3, 2, 5, 5, 0, 2, 3, 7, 0, 5, 0, 2, 8, 2, 0, 5, 7, 7, 3, 2, 0, 5, 5, 9, 3, 2, 0, 10, 0, 2, 10, 2, 5, 5, 0, 2, 3, 14, 0, 5, 0, 2, 8, 2, 7, 5, 0, 7, 3, 2, 0, 12, 5, 2, 3, 2, 0, 10, 7, 2, 3, 2, 5, 5, 0, 9, 3, 7, 0, 5, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA G.f.: Sum_{k>=1} prime(k) * x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020 EXAMPLE 2 and 3 are the distinct prime divisors of 12 and both 2 and 3 are <= square root of 12. So a(12) = 2 + 3 = 5. MAPLE with(numtheory): a:=proc(n) local s, F, f, i: s:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then s:=s+F[i] else s:=s: fi od: s; end: seq(a(n), n=1..110); # Emeric Deutsch, Jan 30 2006 MATHEMATICA Do[Print[Plus @@ Select[Select[Divisors[n], PrimeQ], #<=Sqrt[n] &]], {n, 1, 100}] (* Ryan Propper, Jul 23 2005 *) Table[DivisorSum[n, # &, And[PrimeQ@ #, # <= Sqrt[n]] &], {n, 103}] (* Michael De Vlieger, Sep 04 2017 *) PROG (Haskell) a097974 n = sum [p | p <- a027748_row n, p ^ 2 <= n] -- Reinhard Zumkeller, Apr 05 2012 (PARI) a(n) = sumdiv(n, d, d*isprime(d)*(d <= sqrt(n))); \\ Michel Marcus, Aug 17 2017 CROSSREFS Cf. A027748, A063962. Sequence in context: A271419 A278922 A163169 * A333753 A139036 A292129 Adjacent sequences:  A097971 A097972 A097973 * A097975 A097976 A097977 KEYWORD nonn AUTHOR Leroy Quet, Sep 07 2004 EXTENSIONS More terms from Ryan Propper, Jul 23 2005 Further terms from Emeric Deutsch, Jan 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 14:18 EST 2021. Contains 340362 sequences. (Running on oeis4.)