login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333753
Sum of prime power divisors of n that are <= sqrt(n).
4
0, 0, 0, 2, 0, 2, 0, 2, 3, 2, 0, 5, 0, 2, 3, 6, 0, 5, 0, 6, 3, 2, 0, 9, 5, 2, 3, 6, 0, 10, 0, 6, 3, 2, 5, 9, 0, 2, 3, 11, 0, 5, 0, 6, 8, 2, 0, 9, 7, 7, 3, 6, 0, 5, 5, 13, 3, 2, 0, 14, 0, 2, 10, 14, 5, 5, 0, 6, 3, 14, 0, 17, 0, 2, 8, 6, 7, 5, 0, 19, 12, 2, 0, 16, 5, 2, 3, 14, 0, 19
OFFSET
1,4
LINKS
FORMULA
G.f.: Sum_{p prime, k>=1} p^k * x^(p^(2*k)) / (1 - x^(p^k)).
MAPLE
f:= proc(n) local F, i, j, t;
F:= ifactors(n)[2];
t:= 0;
for i from 1 to nops(F) do
j:= min(F[i, 2], ilog[F[i, 1]^2](n));
t:= t + (F[i, 1]^j-1)*F[i, 1]/(F[i, 1]-1)
od;
t
end proc:
map(f, [$1..100]); # Robert Israel, Feb 15 2023
MATHEMATICA
Table[DivisorSum[n, # &, # <= Sqrt[n] && PrimePowerQ[#] &], {n, 1, 90}]
nmax = 90; CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(PARI) a(n) = sumdiv(n, d, if ((d^2<=n) && isprimepower(d), d)); \\ Michel Marcus, Apr 03 2020
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 03 2020
STATUS
approved