

A097973


Least m>p such that pm, p+1m+1 and p+2m+2, for twin prime pairs (p, p+2), p in A001359.


1



63, 215, 1727, 5831, 26999, 74087, 215999, 373247, 1061207, 1259711, 2628071, 3374999, 5831999, 7077887, 7762391, 11852351, 13823999, 19682999, 22425767, 30371327, 42144191, 74087999, 80621567, 98611127, 142236647, 185192999
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = p*(p+1)*(p+2) + p = (p+1)^3  1 (p=A001359, p+1=A014574).


EXAMPLE

The triple {a(6), a(6)+1, a(6)+2}, for instance, i.e., (74087=41*1807, 74088=42*1764, 74089=43*1723) is the smallest one whose elements are respectively divisible by those of (41, 42, 43), (41, 43) being the 6th twin prime pair.


MAPLE

map(t > (t+1)^31, select(t > isprime(t) and isprime(t+2), [3, seq(i, i=5..10^4, 6)])); # Robert Israel, May 16 2018


CROSSREFS

Sequence in context: A199850 A055811 A035329 * A038644 A083079 A230651
Adjacent sequences: A097970 A097971 A097972 * A097974 A097975 A097976


KEYWORD

nonn


AUTHOR

Lekraj Beedassy, Sep 07 2004


STATUS

approved



