OFFSET
1,12
COMMENTS
If we define a divisor d|n to be strictly inferior if d < n/d, then strictly inferior divisors are counted by A056924 and listed by A341674. This sequence counts strictly inferior odd divisors. - Gus Wiseman, Feb 26 2021
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
G.f.: Sum_{k>=1} x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).
EXAMPLE
The strictly inferior odd divisors of 945 are 1, 3, 5, 7, 9, 15, 21, 27, so a(945) = 8. - Gus Wiseman, Feb 27 2021
MATHEMATICA
Table[DivisorSum[n, 1 &, # < Sqrt[n] && OddQ[#] &], {n, 1, 90}]
nmax = 90; CoefficientList[Series[Sum[x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(PARI) A333805(n) = sumdiv(n, d, (d%2)&&((d*d)<n)); \\ Antti Karttunen, Nov 02 2022
CROSSREFS
Dominated by A001227 (number of odd divisors).
Strictly inferior divisors (not just odd) are counted by A056924.
The non-strict version is A069288.
These divisors add up to A070039.
The case of prime divisors is A333806.
The strictly superior version is A341594.
The case of squarefree divisors is A341596.
The superior version is A341675.
The case of prime-power divisors is A341677.
A006530 selects the greatest prime factor.
A020639 selects the smallest prime factor.
- Odd -
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
- Inferior divisors -
A033676 selects the greatest inferior divisor.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A060775 selects the greatest strictly inferior divisor.
A341674 lists strictly inferior divisors.
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 05 2020
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Nov 02 2022
STATUS
approved