The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051283 Numbers k such that if one writes k = Product p_i^e_i (p_i primes) and P = max p_i^e_i, then k/P > P. 36
 30, 60, 70, 84, 90, 105, 120, 126, 132, 140, 154, 165, 168, 180, 182, 195, 198, 210, 220, 231, 234, 252, 260, 264, 273, 280, 286, 306, 308, 312, 315, 330, 336, 340, 357, 360, 364, 374, 380, 385, 390, 396, 399, 408, 418, 420, 429, 440, 442, 455, 456, 462 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers k such such that A346418(k) > 1 (conjectured). - Amiram Eldar, Jul 16 2021 Numbers k for which A354933(k) > A034699(k), i.e., where A354995(k) > 0 (conjectured).- Antti Karttunen, Jun 19 2022 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A080170(n) + 1 (conjectured). - Ralf Stephan, Feb 20 2004 EXAMPLE 120 = 2^3*3^1*5^1, P = 2^3 = 8. 120 is included because 120/8 = 15 > 8. MATHEMATICA ok[n_] := n > Max[Power @@@ FactorInteger[n]]^2; Select[Range[465], ok] (* Jean-François Alcover, Apr 11 2011 *) PROG (Haskell) a051283 n = a051283_list !! (n-1) a051283_list = filter (\x -> (a034699 x) ^ 2 < x) [1..] -- Reinhard Zumkeller, May 30 2013 (PARI) lista(nn) = for(k=2, nn, f=factor(k); if(k>vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]))^2, print1(k, ", "))); \\ Jinyuan Wang, Feb 28 2020 CROSSREFS Cf. A034699, A080170, A110612, A346418, A354933, A354995, A354996 (characteristic function). Sequence in context: A051488 A305613 A267967 * A066031 A212666 A291046 Adjacent sequences: A051280 A051281 A051282 * A051284 A051285 A051286 KEYWORD nonn,easy,nice AUTHOR Leroy Quet EXTENSIONS More terms from James A. Sellers, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 17:14 EDT 2023. Contains 365531 sequences. (Running on oeis4.)