login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051283
Numbers k such that if one writes k = Product p_i^e_i (p_i primes) and P = max p_i^e_i, then k/P > P.
36
30, 60, 70, 84, 90, 105, 120, 126, 132, 140, 154, 165, 168, 180, 182, 195, 198, 210, 220, 231, 234, 252, 260, 264, 273, 280, 286, 306, 308, 312, 315, 330, 336, 340, 357, 360, 364, 374, 380, 385, 390, 396, 399, 408, 418, 420, 429, 440, 442, 455, 456, 462
OFFSET
1,1
COMMENTS
Numbers k such that A346418(k) > 1 (conjectured). - Amiram Eldar, Jul 16 2021
Numbers k for which A354933(k) > A034699(k), i.e., where A354995(k) > 0 (conjectured).- Antti Karttunen, Jun 19 2022
LINKS
FORMULA
a(n) = A080170(n) + 1 (conjectured). - Ralf Stephan, Feb 20 2004
EXAMPLE
120 = 2^3*3^1*5^1, P = 2^3 = 8. 120 is included because 120/8 = 15 > 8.
MATHEMATICA
ok[n_] := n > Max[Power @@@ FactorInteger[n]]^2; Select[Range[465], ok] (* Jean-François Alcover, Apr 11 2011 *)
PROG
(Haskell)
a051283 n = a051283_list !! (n-1)
a051283_list = filter (\x -> (a034699 x) ^ 2 < x) [1..]
-- Reinhard Zumkeller, May 30 2013
(PARI) lista(nn) = for(k=2, nn, f=factor(k); if(k>vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]))^2, print1(k, ", "))); \\ Jinyuan Wang, Feb 28 2020
CROSSREFS
Cf. A034699, A080170, A110612, A346418, A354933, A354995, A354996 (characteristic function).
Sequence in context: A051488 A305613 A267967 * A066031 A212666 A291046
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Dec 11 1999
STATUS
approved