login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346418
a(n) is the exponent of the largest power of n that divides the least common multiple of {1,2,...,n} (A003418). a(1) = 1.
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
OFFSET
1,30
LINKS
Paul Erdős, Problem 10192, The American Mathematical Monthly, Vol. 99, No. 1 (1992), p. 61; An Arithmetic Function of Modest Size, solution to problem 10192 by Richard Stong, ibid., Vol. 104, No. 1 (1997), pp. 69-70.
FORMULA
a(n) <= omega(n), and a(n) < omega(n) whenever omega(n) > 1.
Max_{k=2..n} a(k) ~ log(n)/(log(log(n)) + o(1)) (Erdős, 1992).
EXAMPLE
a(2) = 1 since A003418(2) = 2, and 2^1|A003418(2).
a(30) = 2 since A003418(30) = 2329089562800 = 30^2 * 2587877292, and 30^2|A003418(30).
MATHEMATICA
a[1] = 1; a[n_] := IntegerExponent[LCM @@ Range[n], n]; Array[a, 100]
PROG
(PARI) a(n) = if (n==1, 1, valuation(lcm([1..n]), n)); \\ Michel Marcus, Jul 17 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 16 2021
STATUS
approved