login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288120
Number of partitions of n into distinct pentanacci numbers (with a single type of 1) (A001591).
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
0,32
COMMENTS
The first occurrences of 1, 2, 3, 4, 5, ... are at n=0, 31, 912, 1824, 26815, ... - Antti Karttunen, Dec 22 2017
LINKS
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
Eric Weisstein's World of Mathematics, Pentanacci Number
FORMULA
G.f.: Product_{k>=5} (1 + x^A001591(k)).
EXAMPLE
a(31) = 2 because we have [31] and [16, 8, 4, 2, 1].
PROG
(PARI)
A001591(n) = { if(n<=3, return(0)); my(p0=0, p1=0, p2=0, p3=1, p4=1, old_p0); while(n>5, n--; old_p0=p0; p0=p1; p1=p2; p2=p3; p3=p4; p4=old_p0+p0+p1+p2+p3; ); p4; }
v288120nthgen(up_to) = { my(k=6, fk, vec = [1], vec2); while(k<=up_to, fk = A001591(k); k++; vec2 = vector(length(vec)+fk, i, (i==fk)+if(i>fk, vec[i-fk], 0)+if(i<=length(vec), vec[i], 0)); vec = vec2); vector(fk, i, vec[i]); }
write_to_bfile_with_a0_as_given(a0, vec, bfilename) = { write(bfilename, 0, " ", a0); for(n=1, length(vec), write(bfilename, n, " ", vec[n])); }
write_to_bfile_with_a0_as_given(1, v288120nthgen(21), "b288120.txt"); \\ Antti Karttunen, Dec 22 2017
(Scheme)
(define (A288120 n) (let ((s (list 0))) (let fork ((r n) (i 5)) (cond ((zero? r) (set-car! s (+ 1 (car s)))) ((> (A001591 i) r) #f) (else (begin (fork (- r (A001591 i)) (+ 1 i)) (fork r (+ 1 i)))))) (car s)))
;; This one uses memoization-macro definec
(definec (A001591 n) (cond ((<= n 3) 0) ((= 4 n) 1) (else (+ (A001591 (- n 1)) (A001591 (- n 2)) (A001591 (- n 3)) (A001591 (- n 4)) (A001591 (- n 5))))))
;; Antti Karttunen, Dec 22 2017
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 05 2017
EXTENSIONS
More terms from Antti Karttunen, Dec 22 2017
STATUS
approved