login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249770
Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order n with k invariant factors (2 <= n, 1 <= k).
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
2,21
COMMENTS
The length of n-th row is A051903(n) and its last element is A249773(A101296(n)).
T(n,k) depends only on k and the prime signature of n.
LINKS
FORMULA
T(n,k) = A249771(A101296(n),k).
T(n,1) = 1. If k > 1 and n = Product(p_i^e_i), T(n,k) = Sum(Product(A008284(e_i,k), i in I) * Product(A026820(e_i,k-1), i not in I)), where the sum is taken over nonempty subsets I of {1,...,omega(n)}.
If p is prime and gcd(p,n) = 1, T(pn,k) = T(n,k).
Dirichlet g.f. of column sums: zeta(s)zeta(2s)···zeta(ms) = 1 + Sum_{n >= 2} (Sum_{k=1..m} T(n,k)) / n^s.
T(n,1) + T(n,2) = A046951(n)
EXAMPLE
First rows:
1;
1;
1,1;
1;
1;
1;
1,1,1;
1,1;
1;
1;
1,1;
1;
1;
1;
1,2,1,1;
1;
...
MATHEMATICA
f[{x_, y_}] := x^IntegerPartitions[y];
g[n_] := FactorInteger[n][[1, 1]];
h[list_] := Apply[Times, Map[PadRight[#, Max[Map[Length, SplitBy[list, g]]], 1] &, SplitBy[list, g]]]; t[list_] := Tally[Map[Length, list]][[All, 2]];
Map[t, Table[Map[h, Join @@@ Tuples[Map[f, FactorInteger[n]]]], {n, 2, 50}]] // Grid (* Geoffrey Critzer, Nov 26 2015 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Álvar Ibeas, Nov 06 2014
STATUS
approved