login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346417
E.g.f.: exp(exp(2*(exp(x) - 1)) - 1).
4
1, 2, 10, 66, 538, 5186, 57402, 714594, 9853978, 148774914, 2436823034, 42979319202, 811254807770, 16302732719682, 347248840767162, 7809649226242530, 184831773033020826, 4589793199157616770, 119272846472231229818, 3235960069037751550498, 91466308730323104617050
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * 2^k * Bell(k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A001861(k) * a(n-k).
MAPLE
b:= proc(n, t, m) option remember; `if`(n=0, `if`(t=1, 1,
b(m, 1, 0)*2^m) , m*b(n-1, t, m)+b(n-1, t, m+1))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 06 2021
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[Exp[2 (Exp[x] - 1)] - 1], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 2^k BellB[k], {k, 0, n}], {n, 0, 20}]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] BellB[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(exp(exp(2*(exp(x) - 1)) - 1))) \\ Michel Marcus, Jul 19 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 16 2021
STATUS
approved