login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376226
G.f. satisfies A(x) = A(x^3 + 6*x*A(x)^3) / A(x^2 + 4*x*A(x)^2).
1
1, 2, 10, 66, 518, 4484, 41424, 399900, 3983698, 40622502, 421780380, 4442833776, 47353725678, 509717438804, 5532808254500, 60492412303032, 665570138005230, 7363717939202660, 81872879608989990, 914314572022052508, 10251126194392776384, 115346231108018654736, 1302114832694059544892
OFFSET
1,2
COMMENTS
Compare to C(x) = C(x^3 + 3*x*C(x)^3) / C(x^2 + 2*x*C(x)^2), where C(x) = x + C(x)^2 is the g.f. of the Catalan numbers (A000108).
Conjectures:
(C1) a(n) == 1 (mod 3) iff n = 3^k for some k >= 0.
(C2) a(n) == 2 (mod 3) iff n = A038464(k)/2 for some k >= 1, where A038464 lists the sums of 2 distinct powers of 3.
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 12.086418637032871629430806055580752... and c = 0.01774947449130389477598279659776... - Vaclav Kotesovec, Oct 10 2024
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 10*x^3 + 66*x^4 + 518*x^5 + 4484*x^6 + 41424*x^7 + 399900*x^8 + 3983698*x^9 + 40622502*x^10 + 421780380*x^11 + 4442833776*x^12 + ...
where A(x) = A(x^3 + 6*x*A(x)^3) / A(x^2 + 4*x*A(x)^2).
RELATED SERIES.
A(x^2 + 4*x*A(x)^2) = x^2 + 4*x^3 + 18*x^4 + 112*x^5 + 794*x^6 + 6360*x^7 + 55266*x^8 + 509968*x^9 + 4914150*x^10 + 48889752*x^11 + 498234420*x^12 + ...
A(x^3 + 6*x*A(x)^3) = x^3 + 6*x^4 + 36*x^5 + 254*x^6 + 1980*x^7 + 16812*x^8 + 152002*x^9 + 1440828*x^10 + 14148936*x^11 + 142715046*x^12 + ...
A(x)^2 = x^2 + 4*x^3 + 24*x^4 + 172*x^5 + 1400*x^6 + 12360*x^7 + 115500*x^8 + 1123552*x^9 + 11255688*x^10 + 115291188*x^11 + 1201533048*x^12 + ...
A(x)^3 = x^3 + 6*x^4 + 42*x^5 + 326*x^6 + 2766*x^7 + 25020*x^8 + 237364*x^9 + 2332860*x^10 + 23547474*x^11 + 242620986*x^12 + ...
A(x)^2 / A(x^2 + 4*x*A(x)^2) = 1 + 6*x^2 + 36*x^3 + 354*x^4 + 3264*x^5 + 32010*x^6 + 320400*x^7 + 3276558*x^8 + 34050444*x^9 + 358651116*x^10 + 3820385664*x^11 + 41087069040*x^12 + ...
which also equals A(x)^3 / A(x^3 + 6*x*A(x)^3).
PROG
(PARI) {a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A=concat(A, 0); Ax=Ser(A);
A[#A] = polcoeff( subst(Ax, x, x^3 + 6*x*Ax^3 ) - Ax*subst(Ax, x, x^2 + 4*x*Ax^2 ), #A+1)); A[n+1]}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A060206 A277493 A361448 * A346417 A377529 A108205
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 04 2024
STATUS
approved