login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376229
G.f. A(x) satisfies A(x^2)^3/A(x^4)^3 = 1 + (A(x)/A(x^4) - 1)^2.
2
1, 3, 0, 3, 3, 0, 0, -3, 0, 21, 0, 0, 3, -39, 0, 0, 3, 45, 0, 141, 0, -210, 0, -450, 0, 1335, 0, -258, -3, -2385, 0, 1419, 0, -1161, 0, 15930, 21, -21702, 0, -50682, 0, 171396, 0, -137811, 0, -97470, 0, 339750, 3, -1146573, 0, 3472182, -39, -3829878, 0, -7427862, 0, 32038098, 0, -49562235, 0, 31304094, 0, 67155855, 3
OFFSET
0,2
COMMENTS
Compare to the quadratic modular identity for the Jacobi theta_3 function,
(H(q)/H(q^4) - 1)^2 = H(q^2)^2/H(q^4)^2 - 1,
where H(q) = theta_3(q) = 1 + 2*Sum_{n>=1} x^(n^2) - see the Mathworld link.
LINKS
Weisstein, Eric W., Modular Equation. From MathWorld -- A Wolfram Web Resource.
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1 = A(x^2)^3/A(x^4)^3 - (A(x)/A(x^4) - 1)^2.
(2) A(x^4) = (A(x^2)^3 - A(x^4)^3) / (A(x) - A(x^4))^2.
(3) A(x^4) = (A(x) + A(-x))/2.
(4) (A(x) - A(-x))/2 = sqrt( (A(x^2)^3 - A(x^4)^3)/A(x^4) ).
(5) A(x) = A(x^4) + sqrt( (A(x^2)^3 - A(x^4)^3)/A(x^4) ).
(6) A(-x) = A(x^4) - sqrt( (A(x^2)^3 - A(x^4)^3)/A(x^4) ).
(7) A(x)*A(-x) = A(x^4)^2 - (A(x) - A(x^4))^2.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 3*x^3 + 3*x^4 - 3*x^7 + 21*x^9 + 3*x^12 - 39*x^13 + 3*x^16 + 45*x^17 + 141*x^19 - 210*x^21 - 450*x^23 + 1335*x^25 + ...
RELATED SERIES.
A(x^2)^3/A(x^4)^3 = 1 + 9*x^2 + 18*x^4 - 45*x^6 - 126*x^8 + 297*x^10 + 720*x^12 - 1656*x^14 - 3654*x^16 + 8028*x^18 + ...
(A(x)/A(x^4) - 1)^2 = 9*x^2 + 18*x^4 - 45*x^6 - 126*x^8 + 297*x^10 + 720*x^12 - 1656*x^14 - 3654*x^16 + 8028*x^18 + ...
so that A(x^2)^3/A(x^4)^3 = 1 + (A(x)/A(x^4) - 1)^2.
A(x^2)/A(x^4) = 1 + 3*x^2 - 3*x^4 - 6*x^6 + 12*x^8 + 18*x^10 - 39*x^12 - 66*x^14 + 123*x^16 + 228*x^18 + ...
A(x)/A(x^4) = 1 + 3*x + 3*x^3 - 9*x^5 - 12*x^7 + 48*x^9 + 36*x^11 - 192*x^13 - 117*x^15 + 639*x^17 + ...
SPECIFIC VALUES.
A(z) = 0 at z = -0.31245635185437800233388341696108678693311070024380576235...
where A(z^4) = A(-z)/2 = 1.028596870899697277134090179343886902162374839735...
A(t) = -1 at t = -0.57039858230761517664247163660292675563165147675197101486...
where A(t^4) = (A(-t) - 1)/2 = 1.3215014702102533607352948276634473382263447772...
A(t) = 5 at t = 0.683825059088067195014401842872439819613739530174...
A(t) = 4 at t = 0.606471117891147006067772611853274691396307825562...
A(t) = 3 at t = 0.488969633907794978867963048254535917158223409614...
A(t) = 2 at t = 0.29877528015699666214801376809929520561876608507314234...
A(1/2) = 3.07658827064413627822065439440049423546493612856...
A(1/3) = 2.14782501592238791794931151802849624725193055717...
A(1/4) = 1.80849035462028760274165896397719191308936371488...
A(1/9) = 1.33790523401608922855357625459698254060987461490...
A(1/16) = 1.1882781873719088231283574549917342690921127491...
A(1/81) = 1.0370427517578948927021192402656783153702158307...
A(1/256) = 1.011718929512426215504567386284407285897386297...
PROG
(PARI) {a(n) = my(V=[1, 3], A); for(i=0, n, V = concat(V, 0); A = Ser(V);
V[#V] = polcoef( subst(A, x, x^2)^3/subst(A, x, x^4)^3 - 1 - (A/subst(A, x, x^4) - 1)^2, #V)/6 ); V[n+1]}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A201582 A369881 A115379 * A127801 A096597 A097994
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 15 2024
STATUS
approved