login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127801
Inverse of number triangle A(n,k) = 1/(3 - 2*0^n) if k <= n <= 2k, 0 otherwise.
1
1, 0, 3, 0, -3, 3, 0, 3, -3, 3, 0, 0, 0, -3, 3, 0, -3, 3, 0, -3, 3, 0, 0, 0, 0, 0, -3, 3, 0, 3, -3, 3, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, -3, 3, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, -3, 3, 0, -3, 3
OFFSET
0,3
EXAMPLE
Triangle begins
1;
0, 3;
0, -3, 3;
0, 3, -3, 3;
0, 0, 0, -3, 3;
0, -3, 3, 0, -3, 3;
0, 0, 0, 0, 0, -3, 3;
0, 3, -3, 3, 0, 0, -3, 3;
0, 0, 0, 0, 0, 0, 0, -3, 3;
0, 0, 0, -3, 3, 0, 0, 0, -3, 3;
0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3;
0, -3, 3, 0, -3, 3, 0, 0, 0, 0, -3, 3;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3;
Inverse of triangle
1;
0, 1/3;
0, 1/3, 1/3;
0, 0, 1/3, 1/3;
0, 0, 1/3, 1/3, 1/3;
0, 0, 0, 1/3, 1/3, 1/3;
0, 0, 0, 1/3, 1/3, 1/3, 1/3;
0, 0, 0, 0, 1/3, 1/3, 1/3, 1/3;
0, 0, 0, 0, 1/3, 1/3, 1/3, 1/3, 1/3;
0, 0, 0, 0, 0, 1/3, 1/3, 1/3, 1/3, 1/3;
0, 0, 0, 0, 0, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3;
CROSSREFS
Row sums are A127802.
Sequence in context: A369881 A115379 A376229 * A096597 A097994 A318050
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Jan 29 2007
STATUS
approved