login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127800
Inverse of number triangle A(n,k) = 1/(2 - 0^n), if k <= n <= 2k, 0 otherwise.
0
1, 0, 2, 0, -2, 2, 0, 2, -2, 2, 0, 0, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, 0, 0, 0, 0, -2, 2, 0, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, -2, 2, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, 0, 0, 0, -2, 2
OFFSET
0,3
COMMENTS
Row sums are A069517 (conjecture).
EXAMPLE
Triangle begins
1;
0, 2;
0, -2, 2;
0, 2, -2, 2;
0, 0, 0, -2, 2;
0, -2, 2, 0, -2, 2;
0, 0, 0, 0, 0, -2, 2;
0, 2, -2, 2, 0, 0, -2, 2;
0, 0, 0, 0, 0, 0, 0, -2, 2;
0, 0, 0, -2, 2, 0, 0, 0, -2, 2;
0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2;
0, -2, 2, 0, -2, 2, 0, 0, 0, 0, -2, 2;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2;
Inverse of triangle begins
1;
0, 1/2;
0, 1/2, 1/2;
0, 0, 1/2, 1/2;
0, 0, 1/2, 1/2, 1/2;
0, 0, 0, 1/2, 1/2, 1/2;
0, 0, 0, 1/2, 1/2, 1/2, 1/2;
0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2;
0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2;
0, 0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2;
0, 0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2;
CROSSREFS
Sequence in context: A279103 A318734 A029317 * A035692 A308654 A329860
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Jan 29 2007
STATUS
approved