login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse of number triangle A(n,k) = 1/(2 - 0^n), if k <= n <= 2k, 0 otherwise.
0

%I #6 Sep 30 2018 02:35:36

%S 1,0,2,0,-2,2,0,2,-2,2,0,0,0,-2,2,0,-2,2,0,-2,2,0,0,0,0,0,-2,2,0,2,-2,

%T 2,0,0,-2,2,0,0,0,0,0,0,0,-2,2,0,0,0,-2,2,0,0,0,-2,2,0,0,0,0,0,0,0,0,

%U 0,-2,2,0,-2,2,0,-2,2,0,0,0,0,-2,2

%N Inverse of number triangle A(n,k) = 1/(2 - 0^n), if k <= n <= 2k, 0 otherwise.

%C Row sums are A069517 (conjecture).

%e Triangle begins

%e 1;

%e 0, 2;

%e 0, -2, 2;

%e 0, 2, -2, 2;

%e 0, 0, 0, -2, 2;

%e 0, -2, 2, 0, -2, 2;

%e 0, 0, 0, 0, 0, -2, 2;

%e 0, 2, -2, 2, 0, 0, -2, 2;

%e 0, 0, 0, 0, 0, 0, 0, -2, 2;

%e 0, 0, 0, -2, 2, 0, 0, 0, -2, 2;

%e 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2;

%e 0, -2, 2, 0, -2, 2, 0, 0, 0, 0, -2, 2;

%e 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2;

%e Inverse of triangle begins

%e 1;

%e 0, 1/2;

%e 0, 1/2, 1/2;

%e 0, 0, 1/2, 1/2;

%e 0, 0, 1/2, 1/2, 1/2;

%e 0, 0, 0, 1/2, 1/2, 1/2;

%e 0, 0, 0, 1/2, 1/2, 1/2, 1/2;

%e 0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2;

%e 0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2;

%e 0, 0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2;

%e 0, 0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2;

%K sign,tabl

%O 0,3

%A _Paul Barry_, Jan 29 2007