Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 10 2024 11:46:25
%S 1,2,10,66,518,4484,41424,399900,3983698,40622502,421780380,
%T 4442833776,47353725678,509717438804,5532808254500,60492412303032,
%U 665570138005230,7363717939202660,81872879608989990,914314572022052508,10251126194392776384,115346231108018654736,1302114832694059544892
%N G.f. satisfies A(x) = A(x^3 + 6*x*A(x)^3) / A(x^2 + 4*x*A(x)^2).
%C Compare to C(x) = C(x^3 + 3*x*C(x)^3) / C(x^2 + 2*x*C(x)^2), where C(x) = x + C(x)^2 is the g.f. of the Catalan numbers (A000108).
%C Conjectures:
%C (C1) a(n) == 1 (mod 3) iff n = 3^k for some k >= 0.
%C (C2) a(n) == 2 (mod 3) iff n = A038464(k)/2 for some k >= 1, where A038464 lists the sums of 2 distinct powers of 3.
%H Paul D. Hanna, <a href="/A376226/b376226.txt">Table of n, a(n) for n = 1..520</a>
%F a(n) ~ c * d^n / n^(3/2), where d = 12.086418637032871629430806055580752... and c = 0.01774947449130389477598279659776... - _Vaclav Kotesovec_, Oct 10 2024
%e G.f.: A(x) = x + 2*x^2 + 10*x^3 + 66*x^4 + 518*x^5 + 4484*x^6 + 41424*x^7 + 399900*x^8 + 3983698*x^9 + 40622502*x^10 + 421780380*x^11 + 4442833776*x^12 + ...
%e where A(x) = A(x^3 + 6*x*A(x)^3) / A(x^2 + 4*x*A(x)^2).
%e RELATED SERIES.
%e A(x^2 + 4*x*A(x)^2) = x^2 + 4*x^3 + 18*x^4 + 112*x^5 + 794*x^6 + 6360*x^7 + 55266*x^8 + 509968*x^9 + 4914150*x^10 + 48889752*x^11 + 498234420*x^12 + ...
%e A(x^3 + 6*x*A(x)^3) = x^3 + 6*x^4 + 36*x^5 + 254*x^6 + 1980*x^7 + 16812*x^8 + 152002*x^9 + 1440828*x^10 + 14148936*x^11 + 142715046*x^12 + ...
%e A(x)^2 = x^2 + 4*x^3 + 24*x^4 + 172*x^5 + 1400*x^6 + 12360*x^7 + 115500*x^8 + 1123552*x^9 + 11255688*x^10 + 115291188*x^11 + 1201533048*x^12 + ...
%e A(x)^3 = x^3 + 6*x^4 + 42*x^5 + 326*x^6 + 2766*x^7 + 25020*x^8 + 237364*x^9 + 2332860*x^10 + 23547474*x^11 + 242620986*x^12 + ...
%e A(x)^2 / A(x^2 + 4*x*A(x)^2) = 1 + 6*x^2 + 36*x^3 + 354*x^4 + 3264*x^5 + 32010*x^6 + 320400*x^7 + 3276558*x^8 + 34050444*x^9 + 358651116*x^10 + 3820385664*x^11 + 41087069040*x^12 + ...
%e which also equals A(x)^3 / A(x^3 + 6*x*A(x)^3).
%o (PARI) {a(n) = my(A=[0,1],Ax=x); for(i=1,n, A=concat(A,0); Ax=Ser(A);
%o A[#A] = polcoeff( subst(Ax,x, x^3 + 6*x*Ax^3 ) - Ax*subst(Ax,x, x^2 + 4*x*Ax^2 ),#A+1)); A[n+1]}
%o for(n=1,25,print1(a(n),", "))
%K nonn
%O 1,2
%A _Paul D. Hanna_, Oct 04 2024