login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064052
Not sqrt(n)-smooth: some prime factor of n is > sqrt(n).
48
2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 102
OFFSET
1,1
COMMENTS
This set (S say) has density d(S) = Log(2) - Benoit Cloitre, Jun 12 2002
Finch defines a positive integer N to be "jagged" if its largest prime factor is > sqrt(N). - Frank Ellermann, Apr 21 2011
REFERENCES
Steven R. Finch, Mathematical Constants, 2003, chapter 2.21.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
Eric Weisstein's World of Mathematics, Greatest Prime Factor
EXAMPLE
9=3*3 is not "jagged", but 10=5*2 is "jagged": 5 > sqrt(10).
20=5*2*2 is "jagged", but not squarefree, cf. A005117.
MATHEMATICA
Reap[For[n = 2, n <= 102, n++, f = FactorInteger[n][[-1, 1]]; If[f > Sqrt[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, May 16 2014 *)
PROG
(PARI) { n=0; for (m=2, 10^9, f=factor(m)~; if (f[1, length(f)]^2 > m, write("b064052.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 06 2009
(Python)
from math import isqrt
from sympy import primepi
def A064052(n):
def f(x): return int(n+x-sum(primepi(x//i)-primepi(i) for i in range(1, isqrt(x)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f) # Chai Wah Wu, Sep 01 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Aug 28 2001
STATUS
approved