login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064054
Tenth column of trinomial coefficients.
3
5, 50, 266, 1016, 3139, 8350, 19855, 43252, 87802, 168168, 306735, 536640, 905658, 1481108, 2355962, 3656360, 5550755, 8260934, 12075184, 17363896, 24597925, 34370050, 47419905, 64662780, 87222720, 116470380, 154066125, 202008896, 262691396, 338962184
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = A027907(n+5, 9).
a(n) = binomial(n+5, 5)*(n^4+66*n^3+1307*n^2+8706*n+15120) /(9!/5!).
G.f.: (1+x-x^2)*(5-5*x+x^2)/(1-x)^10, numerator polynomial is N3(9, x)= 5+0*x-9*x^2+6*x^3-x^4 from array A063420.
a(n) = A111808(n+5,9) for n>3. - Reinhard Zumkeller, Aug 17 2005
a(n) = 5*binomial(n+5,5) + 20*binomial(n+5,6) + 21*binomial(n+5,7) + 8*binomial(n+5,8) + binomial(n+5,9) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 9 if 9<n else 2*n-9. - Peter Luschny, May 10 2016
MAPLE
A064054 := n -> GegenbauerC(`if`(9<n, 9, 2*n-9), -n, -1/2):
seq(simplify(A064054(n)), n=5..20); # Peter Luschny, May 10 2016
MATHEMATICA
Table[GegenbauerC[9, -n, -1/2], {n, 5, 50}] (* G. C. Greubel, Feb 28 2017 *)
PROG
(PARI) for(n=0, 25, print1(binomial(n+5, 5)*(n^4 + 66*n^3 + 1307*n^2 + 8706*n + 15120) /(9!/5!), ", ")) \\ G. C. Greubel, Feb 28 2017
CROSSREFS
A005716 (ninth column), A111808.
Sequence in context: A226548 A274064 A302695 * A301821 A301997 A227883
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 29 2001
STATUS
approved