OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = A027907(n+5, 9).
a(n) = binomial(n+5, 5)*(n^4+66*n^3+1307*n^2+8706*n+15120) /(9!/5!).
G.f.: (1+x-x^2)*(5-5*x+x^2)/(1-x)^10, numerator polynomial is N3(9, x)= 5+0*x-9*x^2+6*x^3-x^4 from array A063420.
a(n) = A111808(n+5,9) for n>3. - Reinhard Zumkeller, Aug 17 2005
a(n) = 5*binomial(n+5,5) + 20*binomial(n+5,6) + 21*binomial(n+5,7) + 8*binomial(n+5,8) + binomial(n+5,9) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 9 if 9<n else 2*n-9. - Peter Luschny, May 10 2016
MAPLE
A064054 := n -> GegenbauerC(`if`(9<n, 9, 2*n-9), -n, -1/2):
seq(simplify(A064054(n)), n=5..20); # Peter Luschny, May 10 2016
MATHEMATICA
Table[GegenbauerC[9, -n, -1/2], {n, 5, 50}] (* G. C. Greubel, Feb 28 2017 *)
PROG
(PARI) for(n=0, 25, print1(binomial(n+5, 5)*(n^4 + 66*n^3 + 1307*n^2 + 8706*n + 15120) /(9!/5!), ", ")) \\ G. C. Greubel, Feb 28 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 29 2001
STATUS
approved