The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064052 Not sqrt(n)-smooth: some prime factor of n is > sqrt(n). 48

%I

%S 2,3,5,6,7,10,11,13,14,15,17,19,20,21,22,23,26,28,29,31,33,34,35,37,

%T 38,39,41,42,43,44,46,47,51,52,53,55,57,58,59,61,62,65,66,67,68,69,71,

%U 73,74,76,77,78,79,82,83,85,86,87,88,89,91,92,93,94,95,97,99,101,102

%N Not sqrt(n)-smooth: some prime factor of n is > sqrt(n).

%C This set (S say) has density d(S) = Log(2) - _Benoit Cloitre_, Jun 12 2002

%C Finch defines a positive integer N to be "jagged" if its largest prime factor is > sqrt(N). - _Frank Ellermann_, Apr 21 2011

%D S. R. Finch, Mathematical Constants, 2003, chapter 2.21.

%H Ray Chandler, <a href="/A064052/b064052.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Harry J. Smith)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GreatestPrimeFactor.html">Greatest Prime Factor</a>

%e 9=3*3 is not "jagged", but 10=5*2 is "jagged": 5 > sqrt(10).

%e 20=5*2*2 is "jagged", but not squarefree, cf. A005117.

%t Reap[For[n = 2, n <= 102, n++, f = FactorInteger[n][[-1, 1]]; If[f > Sqrt[n], Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, May 16 2014 *)

%o (PARI) { n=0; for (m=2, 10^9, f=factor(m)~; if (f[1, length(f)]^2 > m, write("b064052.txt", n++, " ", m); if (n==1000, break)) ) } \\ _Harry J. Smith_, Sep 06 2009

%Y Cf. A048098, A063538, A063539.

%K nonn,easy

%O 1,1

%A _Dean Hickerson_, Aug 28 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 12:44 EDT 2021. Contains 343791 sequences. (Running on oeis4.)