|
|
A072499
|
|
Product of divisors of n which are <= n^(1/2).
|
|
15
|
|
|
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 3, 8, 1, 6, 1, 8, 3, 2, 1, 24, 5, 2, 3, 8, 1, 30, 1, 8, 3, 2, 5, 144, 1, 2, 3, 40, 1, 36, 1, 8, 15, 2, 1, 144, 7, 10, 3, 8, 1, 36, 5, 56, 3, 2, 1, 720, 1, 2, 21, 64, 5, 36, 1, 8, 3, 70, 1, 1152, 1, 2, 15, 8, 7, 36, 1, 320, 27, 2, 1, 1008, 5, 2, 3, 64, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
a(1) = 1 and a(24) = 24. For each pair of primes p,q such that p < q < p^2, if n = p^3*q, then a(n) = n. There are others as well; e.g., a(40) = 40. - Don Reble, Aug 02 2002
It appears that the fixed points belong to 3 categories: p^6 (A030516), p^3*q, or p*q*r. - Michel Marcus, May 16 2014
|
|
LINKS
|
|
|
EXAMPLE
|
a(20) = 8. The divisors of 20 are 1,2,4,5,10 and 20. a(20) = 1*2*4 = 8.
|
|
MATHEMATICA
|
a[n_] := Times @@ Select[Divisors[n], #^2 <= n &]; Array[a, 100] (* Amiram Eldar, Jul 31 2022 *)
|
|
PROG
|
(Haskell)
(PARI) a(n) = my(d = divisors(n)); prod(i=1, #d, if (d[i]^2 <= n, d[i], 1)); \\ Michel Marcus, May 16 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|