login
A341592
Number of squarefree superior divisors of n.
26
1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 0, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 1, 3, 1, 2, 1, 0, 2, 4, 1, 2, 2, 4, 1, 0, 1, 2, 1, 2, 2, 4, 1, 1, 0, 2, 1, 3, 2, 2, 2
OFFSET
1,6
COMMENTS
We define a divisor d|n to be superior if d >= n/d. Superior divisors are counted by A038548 and listed by A161908.
LINKS
EXAMPLE
The strictly superior squarefree divisors (columns) of selected n:
1 6 8 30 60 210 420 630 1050 2310 4620 6930
------------------------------------------------------
1 3 . 6 10 15 21 30 35 55 70 105
6 10 15 21 30 35 42 66 77 110
15 30 30 35 42 70 70 105 154
30 35 42 70 105 77 110 165
42 70 105 210 105 154 210
70 105 210 110 165 231
105 210 154 210 330
210 165 231 385
210 330 462
231 385 770
330 462 1155
385 770 2310
462 1155
770 2310
1155
2310
MAPLE
with(numtheory):
a := n -> nops(select(d -> d*d >= n and issqrfree(d), divisors(n))):
seq(a(n), n = 1..88); # Peter Luschny, Feb 20 2021
MATHEMATICA
Table[Length[Select[Divisors[n], SquareFreeQ[#]&&#>=n/#&]], {n, 100}]
PROG
(PARI) a(n) = sumdiv(n, d, d^2 >= n && issquarefree(d)); \\ Amiram Eldar, Nov 01 2024
CROSSREFS
Positions of zeros are A059172.
The inferior version is A333749.
The version for prime instead of squarefree divisors is A341591.
The version for prime powers instead of squarefree divisors is A341593.
The strictly superior case is A341595.
The version for odd instead of squarefree divisors is A341675.
A001221 counts prime divisors, with sum A001414.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A161908 lists superior divisors.
A207375 lists central divisors.
- Strictly Inferior: A060775, A333805, A333806, A341596, A341674.
Sequence in context: A237194 A143519 A344606 * A348952 A307778 A029376
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 19 2021
STATUS
approved