login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348952
a(n) = -Sum_{d|n, d < sqrt(n)} (-1)^(d + n/d).
5
0, 1, -1, 1, -1, 2, -1, 0, -1, 2, -1, 1, -1, 2, -2, 0, -1, 3, -1, 1, -2, 2, -1, 0, -1, 2, -2, 1, -1, 4, -1, -1, -2, 2, -2, 2, -1, 2, -2, 0, -1, 4, -1, 1, -3, 2, -1, -1, -1, 3, -2, 1, -1, 4, -2, 0, -2, 2, -1, 2, -1, 2, -3, -1, -2, 4, -1, 1, -2, 4, -1, 0, -1, 2, -3, 1, -2, 4, -1, -1
OFFSET
1,6
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(k*(k + 1)) / (1 + x^k).
For p odd prime, a(p) = a(p^2) = -1. - Bernard Schott, Nov 22 2021
MATHEMATICA
Table[-DivisorSum[n, (-1)^(# + n/#) &, # < Sqrt[n] &], {n, 1, 80}]
nmax = 80; CoefficientList[Series[Sum[x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(PARI) A348952(n) = -sumdiv(n, d, if((d*d)<n, (-1)^(d + (n/d)), 0)); \\ Antti Karttunen, Nov 05 2021
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 04 2021
STATUS
approved