login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348955
a(1) = 1; a(n) = Sum_{d|n, d <= sqrt(n)} a(d)^2.
5
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 6, 1, 3, 1, 6, 2, 2, 1, 7, 2, 2, 2, 6, 1, 4, 1, 6, 2, 2, 2, 11, 1, 2, 2, 7, 1, 7, 1, 6, 3, 2, 1, 11, 2, 3, 2, 6, 1, 7, 2, 7, 2, 2, 1, 12, 1, 2, 3, 10, 2, 7, 1, 6, 2, 4, 1, 15, 1, 2, 3, 6, 2, 7, 1, 11, 6, 2, 1, 12, 2, 2, 2, 10, 1, 12
OFFSET
1,4
LINKS
FORMULA
G.f.: Sum_{k>=1} a(k)^2 * x^(k^2) / (1 - x^k).
a(4^n) = A067868(n).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = DivisorSum[n, a[#]^2 &, # <= Sqrt[n] &]; Table[a[n], {n, 90}]
PROG
(PARI) A348955(n) = if(1==n, n, sumdiv(n, d, if((d*d)<=n, A348955(d)^2, 0))); \\ Antti Karttunen, Nov 05 2021
CROSSREFS
Cf. A008578 (positions of 1's), A067868, A068108, A082588, A337135, A348956.
Sequence in context: A342679 A337135 A113309 * A062362 A330437 A338648
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 04 2021
STATUS
approved