login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113309 a(n) = the number of finite sequences of positive integers {b(k)} where (product b(k)) * (sum b(k)) = n. Different orderings of the same sequence {b(k)} are not counted separately. 4
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 4, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 4, 3, 2, 1, 9, 2, 3, 2, 4, 1, 6, 2, 7, 2, 2, 1, 8, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 11, 1, 2, 3, 4, 2, 5, 1, 9, 4, 2, 1, 10, 2, 2, 2, 7, 1, 9, 2, 4, 2, 2, 2, 13, 1, 3, 4, 7, 1, 5, 1, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Sequence's terms calculated by "Max".

First occurrence: 1, 4, 12, 16, 24, 54, 36, 60, 48, 84, 72, 108, 96, ..., . - Robert G. Wilson v, May 03 2006

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 4096 terms from Antti Karttunen)

FORMULA

a(n) = 1 iff n = 1 or n is a prime. a(n) = 2 if n is a semiprime. - Robert G. Wilson v, May 03 2006

a(n) = Sum_{d|n} {number of partitions of d where product of parts = n/d}. - Antti Karttunen, Nov 03 2017

EXAMPLE

6 = (1*1*1*1*1*1) * (1+1+1+1+1+1) = (1*2) * (1+2). So a(6) = 2.

MATHEMATICA

t = Table[1, {104}]; Do[k = 1; lmt = PartitionsP[n]; p = IntegerPartitions[n]; While[k < lmt, a = Plus @@ p[[k]]*Times @@ p[[k]]; If[a < 105, t[[a]]++ ]; k++ ], {n, 52}]; t (* Robert G. Wilson v, May 03 2006 *)

PROG

(Scheme)

(define (A113309 n) (let ((z (list 0))) (let loop ((k n)) (cond ((zero? k) (car z)) ((not (zero? (modulo n k))) (loop (- k 1))) (else (begin (fold_over_partitions_with_uplim_cut k 1 * (lambda (partprod) (if (= n (* k partprod)) (set-car! z (+ 1 (car z))))) (/ n k)) (loop (- k 1))))))))

(define (fold_over_partitions_with_uplim_cut m initval addpartfun colfun uplim) (let recurse ((m m) (b m) (n 0) (partition initval)) (cond ((zero? m) (colfun partition)) ((> partition uplim) #f) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (addpartfun i partition)) (if (< i (min b m)) (loop (+ 1 i)))))))) ;; This function is a modification of fold_over_partitions_of given in A000793.

;; Antti Karttunen, Nov 03 2017

CROSSREFS

Cf. A057567, A113308.

Sequence in context: A068108 A342679 A337135 * A062362 A330437 A338648

Adjacent sequences:  A113306 A113307 A113308 * A113310 A113311 A113312

KEYWORD

nonn

AUTHOR

Leroy Quet, Oct 25 2005

EXTENSIONS

More terms from Robert G. Wilson v, May 03 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 20:34 EDT 2021. Contains 345388 sequences. (Running on oeis4.)