login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143519
Moebius transform of A010051, the characteristic function of the primes: a(n) = Sum_{d|n} mu(n/d)*A010051(d); A054525 * A010051.
10
0, 1, 1, -1, 1, -2, 1, 0, -1, -2, 1, 1, 1, -2, -2, 0, 1, 1, 1, 1, -2, -2, 1, 0, -1, -2, 0, 1, 1, 3, 1, 0, -2, -2, -2, 0, 1, -2, -2, 0, 1, 3, 1, 1, 1, -2, 1, 0, -1, 1, -2, 1, 1, 0, -2, 0, -2, -2, 1, -1, 1, -2, 1, 0, -2, 3, 1, 1, -2, 3, 1, 0, 1, -2, 1, 1, -2, 3, 1, 0, 0, -2, 1, -1, -2, -2, -2, 0, 1
OFFSET
1,6
COMMENTS
A010051 = A051731 * A143519 (since A051731 = the inverse Mobius transform).
A000720(n) = Sum_{k=1..n} a(k) floor(n/k) where A000720(n) is the number of primes <= n. - Steven Foster Clark, May 25 2018
LINKS
FORMULA
Mobius transform of A010051, the characteristic function of the primes.
Row sums of triangle A143518.
a(n) = Sum_{d|n} A010051(d)*A008683(n/d). - Antti Karttunen, Jul 19 2017
a(n) = Sum_{a*b*c=n} omega(a)*mu(b)*mu(c). - Benedict W. J. Irwin, Mar 02 2022
EXAMPLE
a(4) = -1 since row 4 of triangle A043518 = (0, -1, 0, 0).
a(4) = -1 = (0, -1, 0, 1) dot (0, 1, 1, 0), where (0, -1, 0, 1) = row 4 of A054525 and A010051 = (0, 1, 1, 0, 1, 0, 1, 0, ...).
MATHEMATICA
Table[Sum[MoebiusMu[n/d] Boole[PrimeQ@ d], {d, Divisors@ n}], {n, 89}] (* Michael De Vlieger, Jul 19 2017 *)
PROG
(Sage)
def A143519(n) :
D = filter(is_prime, divisors(n))
return add(moebius(n/d) for d in D)
[A143519(n) for n in (1..89)] # Peter Luschny, Feb 01 2012
(PARI) A143519(n) = sumdiv(n, d, isprime(d)*moebius(n/d)); \\ (After Luschny's Sage-code) - Antti Karttunen, Jul 19 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Gary W. Adamson, Aug 22 2008
EXTENSIONS
More terms from R. J. Mathar, Jan 19 2009
STATUS
approved