OFFSET
0,2
COMMENTS
The Dumont operator: D = y*z*dx + z*x*dy + x*y*dz is used to generate expansions for the Jacobi elliptic functions sn, cn and dn.
FORMULA
E.g.f.: 3/(3*cosh(sqrt(3)*x) - 2*sqrt(3)*sinh(sqrt(3)*x)).
E.g.f.: 2*(3*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x))/(7 - cosh(2*sqrt(3)*x)).
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 27 2013
a(n) ~ n!*(2*sqrt(3)/log(7+4*sqrt(3)))^(n+1). - Vaclav Kotesovec, Oct 05 2013
EXAMPLE
Given the Dumont operator: D = y*z*dx + z*x*dy + x*y*dz,
illustrate a(n) = D^n x evaluated at x=1, y=1, z=2:
D^0 x = x --> a(0) = 1;
D^1 x = y*z --> a(1) = 2;
D^2 x = (y^2 + z^2)*x --> a(2) = 5;
D^3 x = 4*z*y*x^2 + (z*y^3 + z^3*y) --> a(3) = 18;
D^4 x = (4*y^2 + 4*z^2)*x^3 + (y^4 + 14*z^2*y^2 + z^4)*x --> a(4) = 93;
D^5 x = 16*z*y*x^4 + (44*z*y^3 + 44*z^3*y)*x^2 + (z*y^5 + 14*z^3*y^3 + z^5*y) --> a(5) = 618.
MATHEMATICA
CoefficientList[Series[3/(3*Cosh[Sqrt[3]*x] - 2*Sqrt[3]*Sinh[Sqrt[3]*x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)
PROG
(PARI) {a(n)=local(F=x); if(n>=0, for(i=1, n, F=y*z*deriv(F, x)+z*x*deriv(F, y)+x*y*deriv(F, z))); subst(subst(subst(F, x, 1), y, 1), z, 2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 22 2008
STATUS
approved