login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143522
a(n) = n-fold Dumont operator of x evaluated at x=1, y=1, z=2.
1
1, 2, 5, 18, 93, 618, 4905, 45162, 474777, 5618322, 73895085, 1069104258, 16873062453, 288485314938, 5311769483025, 104789840677722, 2205098925335217, 49302142664941602, 1167150946521879765
OFFSET
0,2
COMMENTS
The Dumont operator: D = y*z*dx + z*x*dy + x*y*dz is used to generate expansions for the Jacobi elliptic functions sn, cn and dn.
FORMULA
E.g.f.: 3/(3*cosh(sqrt(3)*x) - 2*sqrt(3)*sinh(sqrt(3)*x)).
E.g.f.: 2*(3*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x))/(7 - cosh(2*sqrt(3)*x)).
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 27 2013
a(n) ~ n!*(2*sqrt(3)/log(7+4*sqrt(3)))^(n+1). - Vaclav Kotesovec, Oct 05 2013
EXAMPLE
Given the Dumont operator: D = y*z*dx + z*x*dy + x*y*dz,
illustrate a(n) = D^n x evaluated at x=1, y=1, z=2:
D^0 x = x --> a(0) = 1;
D^1 x = y*z --> a(1) = 2;
D^2 x = (y^2 + z^2)*x --> a(2) = 5;
D^3 x = 4*z*y*x^2 + (z*y^3 + z^3*y) --> a(3) = 18;
D^4 x = (4*y^2 + 4*z^2)*x^3 + (y^4 + 14*z^2*y^2 + z^4)*x --> a(4) = 93;
D^5 x = 16*z*y*x^4 + (44*z*y^3 + 44*z^3*y)*x^2 + (z*y^5 + 14*z^3*y^3 + z^5*y) --> a(5) = 618.
MATHEMATICA
CoefficientList[Series[3/(3*Cosh[Sqrt[3]*x] - 2*Sqrt[3]*Sinh[Sqrt[3]*x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)
PROG
(PARI) {a(n)=local(F=x); if(n>=0, for(i=1, n, F=y*z*deriv(F, x)+z*x*deriv(F, y)+x*y*deriv(F, z))); subst(subst(subst(F, x, 1), y, 1), z, 2)}
CROSSREFS
Cf. A143523.
Sequence in context: A057864 A320154 A032273 * A217389 A123310 A058119
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 22 2008
STATUS
approved