login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140271 Least divisor of n that is > sqrt(n), with a(1) = 1. 33
1, 2, 3, 4, 5, 3, 7, 4, 9, 5, 11, 4, 13, 7, 5, 8, 17, 6, 19, 5, 7, 11, 23, 6, 25, 13, 9, 7, 29, 6, 31, 8, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 8, 49, 10, 17, 13, 53, 9, 11, 8, 19, 29, 59, 10, 61, 31, 9, 16, 13, 11, 67, 17, 23, 10, 71, 9, 73, 37, 15, 19, 11, 13, 79, 10, 27 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If n is not a square, then a(n) = A033677(n).

If we define a divisor d|n to be strictly superior if d > n/d, then strictly superior divisors are counted by A056924 and listed by A341673. This sequence selects the smallest strictly superior divisor of n. - Gus Wiseman, Apr 06 2021

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

EXAMPLE

From Gus Wiseman, Apr 06 2021: (Start)

a(n) is the smallest element in the following sets of strictly superior divisors:

   1: {1}       16: {8,16}        31: {31}

   2: {2}       17: {17}          32: {8,16,32}

   3: {3}       18: {6,9,18}      33: {11,33}

   4: {4}       19: {19}          34: {17,34}

   5: {5}       20: {5,10,20}     35: {7,35}

   6: {3,6}     21: {7,21}        36: {9,12,18,36}

   7: {7}       22: {11,22}       37: {37}

   8: {4,8}     23: {23}          38: {19,38}

   9: {9}       24: {6,8,12,24}   39: {13,39}

  10: {5,10}    25: {25}          40: {8,10,20,40}

  11: {11}      26: {13,26}       41: {41}

  12: {4,6,12}  27: {9,27}        42: {7,14,21,42}

  13: {13}      28: {7,14,28}     43: {43}

  14: {7,14}    29: {29}          44: {11,22,44}

  15: {5,15}    30: {6,10,15,30}  45: {9,15,45}

(End)

MAPLE

with(numtheory):

a:= n-> min(select(d-> is(d=n or d>sqrt(n)), divisors(n))):

seq(a(n), n=1..100);  # Alois P. Heinz, Jan 29 2018

MATHEMATICA

Table[Select[Divisors[n], # > Sqrt[n] &][[1]], {n, 2, 70}] (* Stefan Steinerberger, May 18 2008 *)

PROG

(PARI) A140271(n)={local(d, a); d=divisors(n); a=n; for(i=1, length(d), if(d[i]>sqrt(n), a=min (d[i], a))); a} \\ Michael B. Porter, Apr 06 2010

CROSSREFS

Cf. A060775, A033676, A033677.

These divisors are counted by A056924.

These divisors add up to A238535.

These divisors that are odd are counted by A341594.

These divisors that are squarefree are counted by A341595

These divisors that are prime are counted by A341642.

These divisors are listed by A341673.

A038548 counts superior (or inferior) divisors.

A161906 lists inferior divisors.

A161908 lists superior divisors.

A207375 list central divisors.

A341674 lists strictly inferior divisors.

- Inferior: A063962, A066839, A069288, A217581, A333749, A333750.

- Superior: A051283, A059172, A063538, A063539, A070038, A072500, A116882, A116883, A341591, A341592, A341593, A341675, A341676.

- Strictly Inferior: A070039, A333805, A333806, A341596, A341677.

- Strictly Superior: A048098, A064052, A341643, A341644, A341646.

Cf. A000005, A000203, A001221, A001222, A001248, A006530, A020639, A112798.

Sequence in context: A002034 A248937 A088491 * A223491 A275823 A141295

Adjacent sequences:  A140268 A140269 A140270 * A140272 A140273 A140274

KEYWORD

nonn

AUTHOR

Leroy Quet, May 16 2008

EXTENSIONS

More terms from Stefan Steinerberger, May 18 2008

a(70)-a(80) from Ray Chandler, Jun 25 2009

Franklin T. Adams-Watters, Jan 26 2018, added a(1) = 1 to preserve the relation a(n) | n.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 5 19:29 EDT 2021. Contains 343573 sequences. (Running on oeis4.)