login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140269
Numbers n such that gcd((largest divisor of n that is <= sqrt(n)), (smallest divisor of n that is >=sqrt(n))) > 1.
2
4, 8, 9, 16, 18, 24, 25, 27, 32, 36, 48, 49, 50, 54, 60, 64, 75, 80, 81, 96, 98, 100, 108, 112, 120, 121, 125, 128, 135, 140, 144, 147, 150, 160, 162, 168, 169, 180, 189, 192, 196, 200, 216, 224, 225, 242, 243, 245, 250, 252, 256, 264, 270, 280, 288, 289, 294
OFFSET
1,1
COMMENTS
G. Tenenbaum proved that this sequence has density 0 over the integers (théorème 3). - Michel Marcus, Nov 26 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
G. Tenenbaum, Sur deux fonctions de diviseurs, J. London Math. Soc. (1976) s2-14 (3): 521-526.
EXAMPLE
The divisors of 48 are 1,2,3,4,6,8,12,16,24,48. The middle two of these divisors are 6 and 8, which are not coprime. So 48 is included in this sequence.
MATHEMATICA
okQ[n_] := (dd = Divisors[n]; s = Sqrt[n]; d1 = Select[dd, # <= s &] // Last; d2 = Select[dd, # >= s &] // First; !CoprimeQ[d1, d2]); Select[Range[300], okQ] (* Jean-François Alcover, Dec 27 2012 *)
PROG
(PARI) precdiv(n, k) = k=floor(k); while(k>0, if(n%k==0, return(k)); k--)
in140269(n) = local(d); d=precdiv(n, sqrt(n)); gcd(d, n\d)>1
for(n=1, 300, if(in140269(n), print1(n", "))) \\ Franklin T. Adams-Watters, Dec 20 2008
(PARI) is(n)=if(issquare(n), n, my(d=divisors(n)); gcd(d[#d\2], d[#d\2+1]))>1 \\ Charles R Greathouse IV, Nov 26 2012
CROSSREFS
Subsequence of A013929.
Sequence in context: A375403 A299117 A339462 * A339744 A226385 A070003
KEYWORD
nonn
AUTHOR
Leroy Quet, May 16 2008
EXTENSIONS
More terms from Franklin T. Adams-Watters, Dec 20 2008
STATUS
approved