OFFSET
1,1
COMMENTS
G. Tenenbaum proved that this sequence has density 0 over the integers (théorème 3). - Michel Marcus, Nov 26 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
G. Tenenbaum, Sur deux fonctions de diviseurs, J. London Math. Soc. (1976) s2-14 (3): 521-526.
EXAMPLE
The divisors of 48 are 1,2,3,4,6,8,12,16,24,48. The middle two of these divisors are 6 and 8, which are not coprime. So 48 is included in this sequence.
MATHEMATICA
okQ[n_] := (dd = Divisors[n]; s = Sqrt[n]; d1 = Select[dd, # <= s &] // Last; d2 = Select[dd, # >= s &] // First; !CoprimeQ[d1, d2]); Select[Range[300], okQ] (* Jean-François Alcover, Dec 27 2012 *)
PROG
(PARI) precdiv(n, k) = k=floor(k); while(k>0, if(n%k==0, return(k)); k--)
in140269(n) = local(d); d=precdiv(n, sqrt(n)); gcd(d, n\d)>1
for(n=1, 300, if(in140269(n), print1(n", "))) \\ Franklin T. Adams-Watters, Dec 20 2008
(PARI) is(n)=if(issquare(n), n, my(d=divisors(n)); gcd(d[#d\2], d[#d\2+1]))>1 \\ Charles R Greathouse IV, Nov 26 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, May 16 2008
EXTENSIONS
More terms from Franklin T. Adams-Watters, Dec 20 2008
STATUS
approved