OFFSET
0,2
COMMENTS
3-dimensional version of block-walking (0,0) to (n,n) in binomial(2n,n) ways.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 1..200 from Harry J. Smith)
W. Li and E. T. H. Wang, A bug's shortest path on a cube, Mathematics Magazine 58:4 (Sept. 1985), pp. 219-221.
FORMULA
a(n) = 6*binomial(3n, n) - 6*binomial(2n, n).
a(n) = 6*A000846(n) for n>0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(2*n-1)*(n-1)*a(n) + (n-1)*(13*n^2-209*n+258)*a(n-1) + 2*(-259*n^3+1785*n^2-3728*n+2460)*a(n-2) + 6*(295*n^3-2068*n^2+4833*n-3780)*a(n-3) - 36*(3*n-10)*(2*n-7)*(3*n-11)*a(n-4) = 0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(n-1)*(2*n-1)*(11*n^2-33*n+24)*a(n) - (n-1)*(473*n^4-1892*n^3+2561*n^2-1338*n+216)*a(n-1) + 6*(3*n-5)*(3*n-4)*(2*n-3)*(11*n^2-11*n+2)*a(n-2) = 0. - R. J. Mathar, Oct 31 2015
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: -6/sqrt(1-4*x) + 12*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x).
E.g.f: -6*E^(2*x)*BesselI(0,2*x) + 6*2F2(1/3,2/3;1/2,1;27*x/4).
(End)
a(n) ~ 4^(-n)*(3^(3*n+3/2))/sqrt(Pi*n). - Ilya Gutkovskiy, Jul 12 2016
EXAMPLE
a(1)=6: XYZ, XZY, YXZ, YZX, ZXY, ZYX.
MAPLE
A060774 := proc(n)
`if`(n=0, 1,
6*(binomial(3*n, n)-binomial(2*n, n)) ) ;
end proc: # R. J. Mathar, Oct 31 2015
MATHEMATICA
Rest[CoefficientList[Series[-(6/Sqrt[1-4z])+(12Cos[ArcCos[1-27z/2]/6])/Sqrt[4-27z], {z, 0, 20}], z]] (* Benedict W. J. Irwin, Jul 12 2016 *)
PROG
(PARI) j=[]; for(n=1, 50, j=concat(j, 6*(binomial(3*n, n)-binomial(2*n, n)))); j
(PARI) { for (n=1, 200, write("b060774.txt", n, " ", 6*(binomial(3*n, n) - binomial(2*n, n))); ) } \\ Harry J. Smith, Jul 11 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Len Smiley, Apr 25 2001
EXTENSIONS
Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(0)=1 prepended by Alois P. Heinz, Sep 09 2016
STATUS
approved