login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060774
a(n) = number of lattice paths from (0,0,0) to (n,n,n) along the cracks on the surface of a Rubik-ized n X n X n cube so that no step increases distance from goal.
3
1, 6, 54, 384, 2550, 16506, 105840, 677088, 4335606, 27829230, 179161554, 1156987728, 7493841264, 48672149064, 316920674880, 2068273848384, 13525486999542, 88612412883030, 581503640659830, 3821691744347400, 25150239955660050, 165713382866931570
OFFSET
0,2
COMMENTS
3-dimensional version of block-walking (0,0) to (n,n) in binomial(2n,n) ways.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 1..200 from Harry J. Smith)
W. Li and E. T. H. Wang, A bug's shortest path on a cube, Mathematics Magazine 58:4 (Sept. 1985), pp. 219-221.
FORMULA
a(n) = 6*binomial(3n, n) - 6*binomial(2n, n).
a(n) = 6*A000846(n) for n>0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(2*n-1)*(n-1)*a(n) + (n-1)*(13*n^2-209*n+258)*a(n-1) + 2*(-259*n^3+1785*n^2-3728*n+2460)*a(n-2) + 6*(295*n^3-2068*n^2+4833*n-3780)*a(n-3) - 36*(3*n-10)*(2*n-7)*(3*n-11)*a(n-4) = 0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(n-1)*(2*n-1)*(11*n^2-33*n+24)*a(n) - (n-1)*(473*n^4-1892*n^3+2561*n^2-1338*n+216)*a(n-1) + 6*(3*n-5)*(3*n-4)*(2*n-3)*(11*n^2-11*n+2)*a(n-2) = 0. - R. J. Mathar, Oct 31 2015
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: -6/sqrt(1-4*x) + 12*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x).
E.g.f: -6*E^(2*x)*BesselI(0,2*x) + 6*2F2(1/3,2/3;1/2,1;27*x/4).
(End)
a(n) ~ 4^(-n)*(3^(3*n+3/2))/sqrt(Pi*n). - Ilya Gutkovskiy, Jul 12 2016
EXAMPLE
a(1)=6: XYZ, XZY, YXZ, YZX, ZXY, ZYX.
MAPLE
A060774 := proc(n)
`if`(n=0, 1,
6*(binomial(3*n, n)-binomial(2*n, n)) ) ;
end proc: # R. J. Mathar, Oct 31 2015
MATHEMATICA
Rest[CoefficientList[Series[-(6/Sqrt[1-4z])+(12Cos[ArcCos[1-27z/2]/6])/Sqrt[4-27z], {z, 0, 20}], z]] (* Benedict W. J. Irwin, Jul 12 2016 *)
PROG
(PARI) j=[]; for(n=1, 50, j=concat(j, 6*(binomial(3*n, n)-binomial(2*n, n)))); j
(PARI) { for (n=1, 200, write("b060774.txt", n, " ", 6*(binomial(3*n, n) - binomial(2*n, n))); ) } \\ Harry J. Smith, Jul 11 2009
CROSSREFS
Column k=3 of A225094.
Sequence in context: A227268 A364008 A300583 * A043026 A371397 A125837
KEYWORD
nonn,easy
AUTHOR
Len Smiley, Apr 25 2001
EXTENSIONS
Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(0)=1 prepended by Alois P. Heinz, Sep 09 2016
STATUS
approved