Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Oct 27 2023 22:08:43
%S 1,6,54,384,2550,16506,105840,677088,4335606,27829230,179161554,
%T 1156987728,7493841264,48672149064,316920674880,2068273848384,
%U 13525486999542,88612412883030,581503640659830,3821691744347400,25150239955660050,165713382866931570
%N a(n) = number of lattice paths from (0,0,0) to (n,n,n) along the cracks on the surface of a Rubik-ized n X n X n cube so that no step increases distance from goal.
%C 3-dimensional version of block-walking (0,0) to (n,n) in binomial(2n,n) ways.
%H Alois P. Heinz, <a href="/A060774/b060774.txt">Table of n, a(n) for n = 0..1000</a> (terms n = 1..200 from Harry J. Smith)
%H W. Li and E. T. H. Wang, <a href="http://jm.becker.free.fr/pdf/bdpc.pdf">A bug's shortest path on a cube</a>, Mathematics Magazine 58:4 (Sept. 1985), pp. 219-221.
%F a(n) = 6*binomial(3n, n) - 6*binomial(2n, n).
%F a(n) = 6*A000846(n) for n>0. - _R. J. Mathar_, Oct 31 2015
%F Conjecture: 2*n*(2*n-1)*(n-1)*a(n) + (n-1)*(13*n^2-209*n+258)*a(n-1) + 2*(-259*n^3+1785*n^2-3728*n+2460)*a(n-2) + 6*(295*n^3-2068*n^2+4833*n-3780)*a(n-3) - 36*(3*n-10)*(2*n-7)*(3*n-11)*a(n-4) = 0. - _R. J. Mathar_, Oct 31 2015
%F Conjecture: 2*n*(n-1)*(2*n-1)*(11*n^2-33*n+24)*a(n) - (n-1)*(473*n^4-1892*n^3+2561*n^2-1338*n+216)*a(n-1) + 6*(3*n-5)*(3*n-4)*(2*n-3)*(11*n^2-11*n+2)*a(n-2) = 0. - _R. J. Mathar_, Oct 31 2015
%F From _Benedict W. J. Irwin_, Jul 12 2016: (Start)
%F G.f.: -6/sqrt(1-4*x) + 12*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x).
%F E.g.f: -6*E^(2*x)*BesselI(0,2*x) + 6*2F2(1/3,2/3;1/2,1;27*x/4).
%F (End)
%F a(n) ~ 4^(-n)*(3^(3*n+3/2))/sqrt(Pi*n). - _Ilya Gutkovskiy_, Jul 12 2016
%e a(1)=6: XYZ, XZY, YXZ, YZX, ZXY, ZYX.
%p A060774 := proc(n)
%p `if`(n=0, 1,
%p 6*(binomial(3*n,n)-binomial(2*n,n)) ) ;
%p end proc: # _R. J. Mathar_, Oct 31 2015
%t Rest[CoefficientList[Series[-(6/Sqrt[1-4z])+(12Cos[ArcCos[1-27z/2]/6])/Sqrt[4-27z], {z, 0, 20}], z]] (* _Benedict W. J. Irwin_, Jul 12 2016 *)
%o (PARI) j=[]; for(n=1,50,j=concat(j,6*(binomial(3*n,n)-binomial(2*n,n)))); j
%o (PARI) { for (n=1, 200, write("b060774.txt", n, " ", 6*(binomial(3*n, n) - binomial(2*n, n))); ) } \\ _Harry J. Smith_, Jul 11 2009
%Y Column k=3 of A225094.
%K nonn,easy
%O 0,2
%A _Len Smiley_, Apr 25 2001
%E Corrected by _Franklin T. Adams-Watters_ and _T. D. Noe_, Oct 25 2006
%E a(0)=1 prepended by _Alois P. Heinz_, Sep 09 2016