login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345934
Ordinal transform of Kempner numbers, A002034.
3
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 4, 1, 2, 1, 4, 1, 5, 1, 1, 3, 2, 5, 4, 1, 2, 3, 6, 1, 6, 1, 4, 5, 2, 1, 6, 1, 2, 3, 4, 1, 2, 5, 7, 3, 2, 1, 7, 1, 2, 8, 2, 5, 6, 1, 4, 3, 9, 1, 7, 1, 2, 3, 4, 7, 6, 1, 8, 3, 2, 1, 10, 5, 2, 3, 8, 1, 9, 7, 4, 3, 2, 5, 3, 1, 2, 9, 4, 1, 6, 1, 8, 11
OFFSET
1,6
COMMENTS
Number of values of k, 1 <= k <= n, with A002034(k) = A002034(n).
FORMULA
a(n) >= A345935(n).
MATHEMATICA
Table[Length@Select[Table[m=1; While[Mod[m!, k]!=0, m++]; m, {k, n}], #==(m=1; While[Mod[m!, n]!=0, m++]; m)&], {n, 100}] (* Giorgos Kalogeropoulos, Jul 03 2021 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A002034(n) = if(1==n, n, my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
v345934 = ordinal_transform(vector(up_to, n, A002034(n)));
A345934(n) = v345934[n];
CROSSREFS
Cf. also A344770.
Sequence in context: A302776 A366510 A366522 * A060775 A355368 A175494
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Jul 02 2021
STATUS
approved