login
A304645
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^(n-1) - A(x)^n )^n.
0
1, 0, 1, 4, 45, 646, 11791, 256384, 6423769, 181427754, 5689282946, 195908618092, 7345423236232, 297860411541226, 12990182010207113, 606403416131651092, 30175914326945883879, 1594887978524453295830, 89239745135865040868793, 5270747814747645030300220, 327731421167826049968117819, 21401517667824383352272329174
OFFSET
0,4
EXAMPLE
G.f.: A(x) = 1 + x^2 + 4*x^3 + 45*x^4 + 646*x^5 + 11791*x^6 + 256384*x^7 + 6423769*x^8 + 181427754*x^9 + 5689282946*x^10 + 195908618092*x^11 + ...
such that
1 = 1 + (1 - A(x)) + ((1+x) - A(x)^2)^2 + ((1+x)^2 - A(x)^3)^3 + ((1+x)^3 - A(x)^4)^4 + ((1+x)^4 - A(x)^5)^5 + ((1+x)^5 - A(x)^6)^6 + ((1+x)^6 - A(x)^7)^7 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(m-1) - Ser(A)^m)^m ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A114473 A275125 A264123 * A233313 A377550 A126747
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 16 2018
STATUS
approved