login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304646
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^n - 3*x*A(x) )^n / 2^(n+1).
0
1, 6, 96, 2684, 102684, 4882174, 274765780, 17776825674, 1296734890800, 105176634515540, 9386121584857668, 913956454239335458, 96439915256928441812, 10963859751632168911670, 1336217865100834183214232, 173821065329476028503742152, 24041575270091169725708672004, 3523423542388597676305042145010, 545466031946082920876465992159128, 88953328262818340590278809406269142
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 6*x + 96*x^2 + 2684*x^3 + 102684*x^4 + 4882174*x^5 + 274765780*x^6 + 17776825674*x^7 + 1296734890800*x^8 + 105176634515540*x^9 + ...
such that
1 = 1/2 + (1/(1-x) - 3*x*A(x))/2^2 + (1/(1-x)^2 - 3*x*A(x))^2/2^3 + (1/(1-x)^3 - 3*x*A(x))^3/2^4 + (1/(1-x)^4 - 3*x*A(x))^4/2^5 + (1/(1-x)^5 - 3*x*A(x))^5/2^6 + (1/(1-x)^6 - 3*x*A(x))^6/2^7 + ...
CROSSREFS
Cf. A301435.
Sequence in context: A156460 A038094 A346184 * A251576 A374437 A126151
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 16 2018
STATUS
approved