login
A304646
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^n - 3*x*A(x) )^n / 2^(n+1).
0
1, 6, 96, 2684, 102684, 4882174, 274765780, 17776825674, 1296734890800, 105176634515540, 9386121584857668, 913956454239335458, 96439915256928441812, 10963859751632168911670, 1336217865100834183214232, 173821065329476028503742152, 24041575270091169725708672004, 3523423542388597676305042145010, 545466031946082920876465992159128, 88953328262818340590278809406269142
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 6*x + 96*x^2 + 2684*x^3 + 102684*x^4 + 4882174*x^5 + 274765780*x^6 + 17776825674*x^7 + 1296734890800*x^8 + 105176634515540*x^9 + ...
such that
1 = 1/2 + (1/(1-x) - 3*x*A(x))/2^2 + (1/(1-x)^2 - 3*x*A(x))^2/2^3 + (1/(1-x)^3 - 3*x*A(x))^3/2^4 + (1/(1-x)^4 - 3*x*A(x))^4/2^5 + (1/(1-x)^5 - 3*x*A(x))^5/2^6 + (1/(1-x)^6 - 3*x*A(x))^6/2^7 + ...
CROSSREFS
Cf. A301435.
Sequence in context: A156460 A038094 A346184 * A251576 A374437 A126151
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 16 2018
STATUS
approved