|
|
A346184
|
|
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(k^2, n).
|
|
1
|
|
|
1, 1, 6, 96, 2330, 76230, 3132192, 154830704, 8942749020, 590880389676, 43950871549640, 3634094909879808, 330648849617038680, 32827596801363717080, 3531510395923598074560, 409199784951469138012800, 50807611780916913209679632, 6729703201077108496483268880
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..17.
|
|
FORMULA
|
a(n) ~ 2^(2*n - 1/2) * n^(n - 1/2) / (sqrt(Pi*(1+c)) * exp(n + (2+c)^2/8) * (c*(2+c))^n), where c = LambertW(2*exp(-2)) = 0.21771510575709011079475830443...
|
|
MATHEMATICA
|
Table[Sum[Binomial[n, k]*Binomial[k^2, n], {k, 0, n}], {n, 0, 20}]
|
|
CROSSREFS
|
Cf. A003235, A346183.
Sequence in context: A139743 A156460 A038094 * A304646 A251576 A126151
Adjacent sequences: A346181 A346182 A346183 * A346185 A346186 A346187
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Jul 09 2021
|
|
STATUS
|
approved
|
|
|
|