OFFSET
0,1
COMMENTS
Column 2 of square array A152818. - Omar E. Pol, Jan 05 2009
In [Bach et al., Section 9], 2*a(n-2) counts the "small diagrams". - Eric M. Schmidt, Sep 23 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Eric Bach, Jeremie Dusart, Lisa Hellerstein, and Devorah Kletenik, Submodular Goal Value of Boolean Functions, arXiv:1702.04067 [cs.DM], 2017.
Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.
Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
Frank A. Haight, Letter to N. J. A. Sloane, n.d..
Index entries for linear recurrences with constant coefficients, signature (9,-27,27).
FORMULA
a(n) = (n+2)*(n+1)*3^n. - Zerinvary Lajos, Apr 25 2007, corrected by R. J. Mathar, Mar 14 2011
E.g.f.: exp(3*x)*(2 + 12*x + 9*x^2). - Stefano Spezia, Jan 01 2023
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 3 - 6*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 12*log(4/3) - 3. (End)
MAPLE
seq((n+2)*(n+1)*3^n, n=0..23); # Zerinvary Lajos, Apr 25 2007
MATHEMATICA
f[n_] := (n + 2) (n + 1) 3^n; Array[f, 22, 0] (* Robert G. Wilson v, Mar 15 2011 *)
CoefficientList[Series[2/(1 - 3 x)^3, {x, 0, 21}], x] (* Robert G. Wilson v, Mar 15 2011 *)
LinearRecurrence[{9, -27, 27}, {2, 18, 108}, 30] (* Harvey P. Dale, Apr 27 2017 *)
PROG
(PARI) a(n)=(n+2)*(n+1)*3^n \\ Charles R Greathouse IV, Mar 16 2011
(Magma)[(n+2)*(n+1)*3^n: n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved