login
A006042
The nim-square of n.
(Formerly M2251)
6
0, 1, 3, 2, 6, 7, 5, 4, 13, 12, 14, 15, 11, 10, 8, 9, 24, 25, 27, 26, 30, 31, 29, 28, 21, 20, 22, 23, 19, 18, 16, 17, 52, 53, 55, 54, 50, 51, 49, 48, 57, 56, 58, 59, 63, 62, 60, 61, 44, 45, 47, 46, 42, 43, 41, 40, 33, 32, 34, 35, 39, 38, 36, 37, 103, 102, 100, 101, 97, 96, 98, 99
OFFSET
0,3
COMMENTS
This is a permutation of the natural numbers; A160679 is the inverse permutation. - Jianing Song, Aug 10 2022
REFERENCES
J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = A051775(n,n).
From Jianing Song, Aug 10 2022: (Start)
If n = Sum_j 2^e(j), then a(n) is the XOR of A006017(e(j))'s. Proof: let N+ = XOR and N* denote the nim addition and the nim multiplication, then n N* n = (Sum_j 2^e(j)) N* (Sum_j 2^e(j)) = (Nim-sum_j 2^e(j)) N* (Nim-sum_j 2^e(j)) = (Nim-sum_j (2^e(j) N* 2^e(j))) N+ (Nim-sum_{i<j} ((2^e(i) N* 2^e(j)) N+ (2^e(j) N* 2^e(i)))) = (Nim-sum_j (2^e(j) N* 2^e(j))) N+ (Nim-sum_{i<j} 0) = Nim-sum_j (2^e(j) N* 2^e(j)).
For example, for n = 11 = 2^0 + 2^1 + 2^3, a(11) = A006017(0) XOR A006017(1) XOR A006017(3) = 1 XOR 3 XOR 13 = 15.
More generally, if n = Sum_j 2^e(j), k is a power of 2, then the nim k-th power of n is the XOR of (nim k-th power of 2^e(j))'s. (End)
MAPLE
read("transforms") ;
# insert source of nimprodP2() and A051775() from the b-file at A051776 here...
A006042 := proc(n)
A051775(n, n) ;
end proc:
L := [seq( A006042(n), n=1..1000) ]; # R. J. Mathar, May 28 2011
CROSSREFS
Diagonal of A051775. Without 0, diagonal of A051776.
Column 2 of array in A335162.
Other nim k-th powers: A051917 (k=-1), A160679 (k=1/2), A335170 (k=3), A335535 (k=4), A335171 (k=5), A335172 (k=6), A335173 (k=7), A335536 (k=8).
Sequence in context: A360982 A268831 A154435 * A100280 A268827 A092745
KEYWORD
nonn,nice,easy,look
EXTENSIONS
a(1)-a(49) confirmed, a(50)-a(71) added by John W. Layman, Nov 05 2010
a(0) prepended by Jianing Song, Aug 10 2022
STATUS
approved