login
A006044
a(n) = 4^(n-4)*(n-1)*(n-2)*(n-3).
(Formerly M4290)
6
6, 96, 960, 7680, 53760, 344064, 2064384, 11796480, 64880640, 346030080, 1799356416, 9160359936, 45801799680, 225485783040, 1095216660480, 5257039970304, 24970939858944, 117510305218560, 548381424353280, 2539871860162560, 11683410556747776, 53409876830846976
OFFSET
4,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.
Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
FORMULA
G.f. = 6*x^4/(1-4*x)^4. - Emeric Deutsch, Apr 29 2004
a(n) = 6*A038846(n). - R. J. Mathar , Mar 22 2013
E.g.f.: (3 + exp(4*x)*(32*x^3 - 24*x^2 + 12*x - 3))/128. - Stefano Spezia, Jan 01 2023
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=4} 1/a(n) = 18*log(4/3) - 5.
Sum_{n>=4} (-1)^n/a(n) = 50*log(5/4) - 11. (End)
MATHEMATICA
a[n_] := 4^(n - 4)*(n - 1)*(n - 2)*(n - 3); Array[a, 25, 4] (* Amiram Eldar, Jan 08 2023 *)
PROG
(Magma) [4^(n-4)*(n-3)*(n-2)*(n-1): n in [4..30]]; // Vincenzo Librandi, Aug 14 2011
CROSSREFS
Column k=3 of square array A152818. - Paul Curtz, Dec 17 2008 [corrected by Omar E. Pol, Jan 07 2009]
Sequence in context: A055358 A030989 A288845 * A202078 A227262 A001805
KEYWORD
nonn,easy
EXTENSIONS
More terms from Emeric Deutsch, Apr 29 2004
Erroneous reference deleted by Martin J. Erickson (erickson(AT)truman.edu), Nov 03 2010
Entry revised by N. J. A. Sloane, Dec 27 2021
STATUS
approved