login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A064837
a(n) = (6*n^4 + 30*n^3 - 20*n^2 + 14)*n/30 + (n mod 2).
2
0, 2, 18, 114, 420, 1170, 2710, 5538, 10312, 17890, 29338, 45970, 69356, 101362, 144158, 200258, 272528, 364226, 479010, 620978, 794676, 1005138, 1257894, 1559010, 1915096, 2333346, 2821546, 3388114, 4042108, 4793266, 5652014, 6629506, 7737632, 8989058, 10397234
OFFSET
0,2
LINKS
G. L. Cohen and E. Tonkes, Dartboard arrangements, Elect. J. Combin., 8 (No. 2, 2001), #R4.
FORMULA
From R. J. Mathar, Dec 05 2008: (Start)
a(n) = 2*A064838(n).
G.f.: 2x*(1-x^5-2x^4+x^3+21x^2+4x)/((1-x)^6*(1+x)). (End)
a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7). - Harvey P. Dale, Sep 15 2014
MATHEMATICA
Table[(6n^4+30n^3-20n^2+14) n/30+Mod[n, 2], {n, 0, 30}] (* or *) LinearRecurrence[ {5, -9, 5, 5, -9, 5, -1}, {0, 2, 18, 114, 420, 1170, 2710}, 40] (* Harvey P. Dale, Sep 15 2014 *)
PROG
(PARI) a(n) = { (6*n^4 + 30*n^3 - 20*n^2 + 14)*n/30 + n%2 } \\ Harry J. Smith, Sep 28 2009
CROSSREFS
Cf. A064838.
Sequence in context: A370732 A038721 A308700 * A224902 A027433 A153338
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 25 2001
EXTENSIONS
Better description from Frank Ellermann, Mar 16 2002
STATUS
approved