login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064837
a(n) = (6*n^4 + 30*n^3 - 20*n^2 + 14)*n/30 + (n mod 2).
2
0, 2, 18, 114, 420, 1170, 2710, 5538, 10312, 17890, 29338, 45970, 69356, 101362, 144158, 200258, 272528, 364226, 479010, 620978, 794676, 1005138, 1257894, 1559010, 1915096, 2333346, 2821546, 3388114, 4042108, 4793266, 5652014
OFFSET
0,2
LINKS
G. L. Cohen and E. Tonkes, Dartboard arrangements, Elect. J. Combin., 8 (No. 2, 2001), #R4.
FORMULA
From R. J. Mathar, Dec 05 2008: (Start)
a(n) = 2*A064838(n).
G.f.: 2x*(1-x^5-2x^4+x^3+21x^2+4x)/((1-x)^6*(1+x)). (End)
a(0)=0, a(1)=2, a(2)=18, a(3)=114, a(4)=420, a(5)=1170, a(6)=2710, a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7). - Harvey P. Dale, Sep 15 2014
MATHEMATICA
Table[(6n^4+30n^3-20n^2+14) n/30+Mod[n, 2], {n, 0, 30}] (* or *) LinearRecurrence[ {5, -9, 5, 5, -9, 5, -1}, {0, 2, 18, 114, 420, 1170, 2710}, 40] (* Harvey P. Dale, Sep 15 2014 *)
PROG
(PARI) { for (n=0, 500, a=(6*n^4 + 30*n^3 - 20*n^2 + 14)*n/30 + n%2; write("b064837.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009
CROSSREFS
Sequence in context: A370732 A038721 A308700 * A224902 A027433 A153338
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 25 2001
EXTENSIONS
Better description from Frank Ellermann, Mar 16 2002
STATUS
approved