OFFSET
1,6
COMMENTS
f(x) = 1/x + c1*x + c2*x^2 + c3*x^3 + ... is a replicable function if and only if H(a, b) = H(c, d) whenever a*b = c*d and gcd(a, b) = gcd(c, d) where H(,) is defined by Sum_{n,m > 0} H(n, m)*x^n*y^m = log((1/x - 1/y) / (f(x) - f(y))).
REFERENCES
C. J. Cummins, T. Gannon, Modular equations and the genus zero property of moonshine functions, Invent. Math. 129 (1997), no. 3, 413-443. MR1465329 (98k:11046)
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
EXAMPLE
c6 = c4 + c2*c1 so a(6)=2, c10 = c4 + c4*c1 + c3*c2 + c2*c1 so a(10)=4. c12 = c4 + c4*c1 + 2*c3*c2 + c2*c1^2 + c2*c1 so a(12)=5.
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 04 2005
STATUS
approved