login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112333
An invertible triangle of ratios of triple factorials.
6
1, 2, 1, 10, 5, 1, 80, 40, 8, 1, 880, 440, 88, 11, 1, 12320, 6160, 1232, 154, 14, 1, 209440, 104720, 20944, 2618, 238, 17, 1, 4188800, 2094400, 418880, 52360, 4760, 340, 20, 1, 96342400, 48171200, 9634240, 1204280, 109480, 7820, 460, 23, 1, 2504902400
OFFSET
0,2
COMMENTS
First column is A008544. Second column is A034000. Third column is A051605. As a square array read by antidiagonals, columns have e.g.f. (1/(1-3x)^(2/3)) * (1/(1-3x))^k.
FORMULA
Number triangle T(n, k)=if(k<=n, Product{k=1..n, 3k-1}/Product{j=1..k, 3j-1}, 0); T(n, k)=if(k<=n, 3^(n-k)*(n-1/3)!/(k-1/3)!, 0).
EXAMPLE
Triangle begins
1;
2, 1;
10, 5, 1;
80, 40, 8, 1;
880, 440, 88, 11, 1;
12320, 6160, 1232, 154, 14, 1;
Inverse triangle A112334 begins
1;
-2, 1;
0, -5, 1;
0, 0, -8, 1;
0, 0, 0, -11, 1;
0, 0, 0, 0, -14, 1;
0, 0, 0, 0, 0, -17, 1;
MAPLE
nmax:=8: for n from 0 to nmax do for k from 0 to n do if k<=n then T(n, k) := mul(3*k1-1, k1=1..n)/ mul(3*j-1, j=1..k) else T(n, k) := 0: fi: od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od: seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jul 04 2011, revised Nov 23 2012
CROSSREFS
Sequence in context: A121334 A126450 A235608 * A066868 A193900 A319373
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 04 2005
STATUS
approved