login
A193900
Mirror of the triangle A193899.
2
1, 2, 1, 10, 5, 2, 42, 21, 10, 4, 170, 85, 42, 20, 8, 682, 341, 170, 84, 40, 16, 2730, 1365, 682, 340, 168, 80, 32, 10922, 5461, 2730, 1364, 680, 336, 160, 64, 43690, 21845, 10922, 5460, 2728, 1360, 672, 320, 128, 174762, 87381, 43690, 21844, 10920
OFFSET
0,2
COMMENTS
A193900 is obtained by reversing the rows of the triangle A193899.
FORMULA
Write w(n,k) for the triangle at A193899. The triangle at A193900 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
2.....1
10....5....2
42....21...10...4
170...85...42...20..8
682...341..170..84..40..16
MATHEMATICA
z = 12;
p[n_, x_] := x*p[n - 1, x] + 2^n; p[0, x_] := 1;
q[n_, x_] := p[n, x];
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193899 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193900 *)
CROSSREFS
Cf. A193899.
Sequence in context: A235608 A112333 A066868 * A319373 A143172 A004747
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 08 2011
STATUS
approved