login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193902
Triangular array: the self-fusion of (p(n,x)), where p(n,x)=2x*p(n-1,x)+1, p(0,x)=1.
2
1, 2, 1, 4, 6, 3, 8, 12, 14, 7, 16, 24, 28, 30, 15, 32, 48, 56, 60, 62, 31, 64, 96, 112, 120, 124, 126, 63, 128, 192, 224, 240, 248, 252, 254, 127, 256, 384, 448, 480, 496, 504, 508, 510, 255, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 511, 1024, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044, 2046, 1023, 2048, 3072, 3584, 3840
OFFSET
0,2
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows of A193902:
1
2....1
4....6....3
8....12...14...7
16...24...28...30...15
32...48...56...60...62...31
MATHEMATICA
z = 12;
p[n_, x_] := x*p[n - 1, x] + 2^n; p[0, x_] := 1;
q[n_, x_] := 2 x*q[n - 1, x] + 1; q[0, x_] := 1;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193902 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193903 *)
CROSSREFS
Sequence in context: A127366 A064786 A367286 * A043302 A375305 A343964
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 08 2011
STATUS
approved