Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 09 2016 06:19:11
%S 1,2,1,10,5,1,80,40,8,1,880,440,88,11,1,12320,6160,1232,154,14,1,
%T 209440,104720,20944,2618,238,17,1,4188800,2094400,418880,52360,4760,
%U 340,20,1,96342400,48171200,9634240,1204280,109480,7820,460,23,1,2504902400
%N An invertible triangle of ratios of triple factorials.
%C First column is A008544. Second column is A034000. Third column is A051605. As a square array read by antidiagonals, columns have e.g.f. (1/(1-3x)^(2/3)) * (1/(1-3x))^k.
%F Number triangle T(n, k)=if(k<=n, Product{k=1..n, 3k-1}/Product{j=1..k, 3j-1}, 0); T(n, k)=if(k<=n, 3^(n-k)*(n-1/3)!/(k-1/3)!, 0).
%e Triangle begins
%e 1;
%e 2, 1;
%e 10, 5, 1;
%e 80, 40, 8, 1;
%e 880, 440, 88, 11, 1;
%e 12320, 6160, 1232, 154, 14, 1;
%e Inverse triangle A112334 begins
%e 1;
%e -2, 1;
%e 0, -5, 1;
%e 0, 0, -8, 1;
%e 0, 0, 0, -11, 1;
%e 0, 0, 0, 0, -14, 1;
%e 0, 0, 0, 0, 0, -17, 1;
%p nmax:=8: for n from 0 to nmax do for k from 0 to n do if k<=n then T(n, k) := mul(3*k1-1, k1=1..n)/ mul(3*j-1, j=1..k) else T(n, k) := 0: fi: od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od: seq(seq(T(n, k), k=0..n), n=0..nmax); # _Johannes W. Meijer_, Jul 04 2011, revised Nov 23 2012
%K easy,nonn,tabl
%O 0,2
%A _Paul Barry_, Sep 04 2005